Graph minors. XX. Wagner's conjecture

被引:476
作者
Robertson, N
Seymour, PD
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Telcordia Technol, Morristown, NJ 07960 USA
基金
美国国家科学基金会;
关键词
graph; minor; surface embedding; well-quasi-ordering;
D O I
10.1016/j.jctb.2004.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Wagner's conjecture, that for every infinite set of finite graphs, one of its members is isomorphic to a minor of another. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:325 / 357
页数:33
相关论文
共 6 条
[1]   GRAPH MINORS .4. TREE-WIDTH AND WELL-QUASI-ORDERING [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (02) :227-254
[2]   Graph minors. XIX. Well-quasi-ordering on a surface [J].
Robertson, N ;
Seymour, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 90 (02) :325-385
[3]   Graph minors. XVIII. Tree-decompositions and well-quasi-ordering [J].
Robertson, N ;
Seymour, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 89 (01) :77-108
[4]   Graph miners XVII. Taming a vortex [J].
Robertson, N ;
Seymour, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 77 (01) :162-210
[5]   GRAPH MINORS .10. OBSTRUCTIONS TO TREE-DECOMPOSITION [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (02) :153-190
[6]  
Wagner K., 1970, GRAPHENTHEORIE, V248, P61