Morphological Evolution and Solid-Electrolyte Interphase Formation on LiNi0.6Mn0.2Co0.2O2 Cathodes Using Highly Concentrated Ionic Liquid Electrolytes

被引:15
作者
Hasanpoor, Meisam [1 ]
Saurel, Damien [2 ]
Barreno, Rosalia Cid [2 ]
Fraysse, Kilian [1 ]
Echeverria, Maria [2 ]
Jauregui, Maria [2 ]
Bonilla, Francisco [2 ]
Greene, George W. [1 ]
Kerr, Robert [1 ]
Forsyth, Maria [1 ]
Howlett, Patrick C. [1 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Burwood, Vic 3125, Australia
[2] CIC EnergiGUNE, Vitoria 01510, Spain
基金
澳大利亚研究理事会;
关键词
lithium-metal battery; ionic liquids; SEI modification; Ni-rich cathode; degradation mechanism; TRANSITION-METAL OXIDE; NI-RICH; ENERGY-DENSITY; OXYGEN RELEASE; LITHIUM; PERFORMANCE; STABILITY; LAYERS;
D O I
10.1021/acsami.1c21853
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Employing high-voltage Ni-rich cathodes in Li metal batteries (LMBs) requires stabilization of the electrode/ electrolyte interfaces at both electrodes. A stable solid-electrolyte interphase (SEI) and suppression of active material pulverization remain the greatest challenges to achieving efficient long-term cycling. Herein, studies of NMC622 (1 mAh cm(-2)) cathodes were performed using highly concentrated N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (C(3)mpyrFSI) 50 mol % lithium bis(fluorosulfonyl)imide (LiFSI) ionic liquid electrolyte (ILE). The resulting SEI formed at the cathode enabled promising cycling performance (98.13% capacity retention after 100 cycles), and a low degree of ion mixing and lattice expansion was observed, even at an elevated temperature of 50 degrees C. Fitting of acquired impedance spectra indicated that the SEI resistivity (R-SEI) had a low and stable contribution to the internal resistivity of the system, whereas active material pulverization and secondary grain isolation significantly increased the charge transfer resistance (R-CT) throughout cycling.
引用
收藏
页码:13196 / 13205
页数:10
相关论文
共 70 条
  • [1] A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries
    Alvarado, Judith
    Schroeder, Marshall A.
    Zhang, Minghao
    Borodin, Oleg
    Gobrogge, Eric
    Olguin, Marco
    Ding, Michael S.
    Gobet, Mallory
    Greenbaum, Steve
    Meng, Ying Shirley
    Xu, Kang
    [J]. MATERIALS TODAY, 2018, 21 (04) : 341 - 353
  • [2] Future generations of cathode materials: an automotive industry perspective
    Andre, Dave
    Kim, Sung-Jin
    Lamp, Peter
    Lux, Simon Franz
    Maglia, Filippo
    Paschos, Odysseas
    Stiaszny, Barbara
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) : 6709 - 6732
  • [3] Temperature Dependence of Electrochemical Degradation in LiNi1/3Mn1/3Co1/3O2/Li4Ti5O12 Cells
    Bjorklund, Erik
    Naylor, Andrew J.
    Brant, William
    Brandell, Daniel
    Younesi, Reza
    Edstrom, Kristina
    [J]. ENERGY TECHNOLOGY, 2019, 7 (09)
  • [4] Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries
    Campion, CL
    Li, WT
    Lucht, BL
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) : A2327 - A2334
  • [5] Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization
    Cao, Xia
    Ren, Xiaodi
    Zou, Lianfeng
    Engelhard, Mark H.
    Huang, William
    Wang, Hansen
    Matthews, Bethany E.
    Lee, Hongkyung
    Niu, Chaojiang
    Arey, Bruce W.
    Cui, Yi
    Wang, Chongmin
    Xiao, Jie
    Liu, Jun
    Xu, Wu
    Zhang, Ji-Guang
    [J]. NATURE ENERGY, 2019, 4 (09) : 796 - 805
  • [6] High-Efficiency Lithium Metal Anode Enabled by a Concentrated/ Fluorinated Ester Electrolyte
    Chen, Shijian
    Xiang, Yuxuan
    Zheng, Guorui
    Liao, Ying
    Ren, Fucheng
    Zheng, Yezhen
    He, Huajin
    Zheng, Bizhu
    Liu, Xiangsi
    Xu, Ningbo
    Luo, Mingzeng
    Zheng, Jianming
    Yang, Yong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (24) : 27794 - 27802
  • [7] Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries
    Choi, Woosung
    Shin, Heon-Cheol
    Kim, Ji Man
    Choi, Jae-Young
    Yoon, Won-Sub
    [J]. JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2020, 11 (01) : 1 - 13
  • [8] Between Scylla and Charybdis: Balancing Among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries
    de Biasi, Lea
    Kondrakov, Aleksandr O.
    Gesswein, Holger
    Brezesinski, Torsten
    Hartmann, Pascal
    Janek, Juergen
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (47) : 26163 - 26171
  • [9] The cathode-electrolyte interface in the Li-ion battery
    Edström, K
    Gustafsson, T
    Thomas, JO
    [J]. ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 397 - 403
  • [10] Toward Practical Li Metal Batteries: Importance of Separator Compatibility Using Ionic Liquid Electrolytes
    Eftekharnia, Mojtaba
    Hasanpoor, Meisam
    Forsyth, Maria
    Kerr, Robert
    Howlett, Patrick C.
    [J]. ACS APPLIED ENERGY MATERIALS, 2019, 2 (09): : 6655 - 6663