Controlled Release Electrochemical Synthesis and Cytotoxicity Study of Copper(II) Nanoparticles in Copper(II) Decanoate Complex

被引:6
作者
Nordin, Norazzizi [1 ]
Samad, Wan Zurina [2 ]
Kardia, Egi [3 ]
Yahaya, Badrul Hisham [3 ]
Yusop, Muhammad Rahimi [4 ]
Othman, Mohamed Rozali [4 ]
机构
[1] Univ Sains Malaysia, Sch Chem Sci, Gelugor 11800, Pulau Pinang, Malaysia
[2] Kuliyyah Sci Int Islamic Univ Malaysia, Dept Chem, Jalan Sultan Ahmad Shah, Kuantan 25200, Pahang, Malaysia
[3] Univ Sains Malaysia, Adv Med & Dent Inst, Regenerat Med Cluster, Kepala Batas 13200, Pulau Pinang, Malaysia
[4] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Chem Sci & Food Technol, Ukm Bangi 43600, Selangor, Malaysia
关键词
Electrochemical synthesis; copper complexes; nanoparticle; cytotoxicity; GREEN SYNTHESIS; CRYSTAL-STRUCTURES; CUO NANOPARTICLES; CARBOXYLATE; SPECTROSCOPY; ACID; COORDINATION; EXTRACT; VOLTAGE; BINDING;
D O I
10.1142/S1793292018500480
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the present study, a controlled release electrochemical (CRE) technique based on the controlled release of Cu2+ ion from Cu anode in the presence of decanoic acid (HDe) has been used to synthesize Cu(II) decanoate (CuDe(2)) complex. The effect of applied voltages (1-10 V) and electrolyte concentrations (0.1-2.0M CH3COONH4) during the electrolysis on the nanoparticles obtained was studied using TEM. The results reveal that small-sized nanoparticles (2 +/- 1 nm) were obtained by using lowest applied voltage and CH3COONH4 concentration (1V and 0.1M, respectively). The smallest nanoparticle obtained was then used in the cytotoxicity study against A549 and HeLa cells. The synthesized complex gives moderate cytotoxic effect on the selected cells (IC50 = 15.85 mu M and 20.89 mu M, respectively) and low cytotoxic effect on normal cells (IMR90). Apoptosis is the mode of cell death based on the apoptosis assay that has been conducted.
引用
收藏
页数:14
相关论文
共 55 条
[41]  
Ramadevi P., 2014, ADV CHEM, V2014, P1
[42]   Monotropic polymorphism in copper(II) decanoate [J].
Riesco, M. Ramos ;
Casado, F. J. Martinez ;
Lopez-Andres, S. ;
Perez, M. V. Garcia ;
Yelamos, M. I. Redondo ;
Torres, M. R. ;
Garrido, L. ;
Cheda, J. A. Rodriguez .
CRYSTAL GROWTH & DESIGN, 2008, 8 (07) :2547-2554
[43]   Optimization of electrolyte concentration and voltage for effective formation of Sn/SnO2 nanoparticles by electrolysis in liquid [J].
Saito, Genki ;
Azman, Wan Omar Sidiq Bin Wan Mohd ;
Nakasugi, Yuki ;
Akiyama, Tomohiro .
ADVANCED POWDER TECHNOLOGY, 2014, 25 (03) :1038-1042
[44]   Advances in Copper Complexes as Anticancer Agents [J].
Santini, Carlo ;
Pellei, Maura ;
Gandin, Valentina ;
Porchia, Marina ;
Tisato, Francesco ;
Marzano, Cristina .
CHEMICAL REVIEWS, 2014, 114 (01) :815-862
[45]   Engineered nanoparticles interacting with cells: size matters [J].
Shang, Li ;
Nienhaus, Karin ;
Nienhaus, Gerd Ulrich .
JOURNAL OF NANOBIOTECHNOLOGY, 2014, 12
[46]   Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications [J].
Sharma, Jitendra Kumar ;
Akhtar, M. Shaheer ;
Ameen, S. ;
Srivastava, Pratibha ;
Singh, Gurdip .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 632 :321-325
[47]  
Sierra-Avila R., 2014, J NANOMATER, V2014, P1
[48]   Effect of NaOH concentration on structural, surface and antibacterial activity of CuO nanorods synthesized by direct sonochemical method [J].
Sonia, S. ;
Jayram, Naidu Dhanpal ;
Kumar, P. Suresh ;
Mangalaraj, D. ;
Ponpandian, N. ;
Viswanathan, C. .
SUPERLATTICES AND MICROSTRUCTURES, 2014, 66 :1-9
[49]   A green method for the synthesis of Copper Nanoparticles using L-ascorbic acid [J].
Umer, Asim ;
Naveed, Shahid ;
Ramzan, Naveed ;
Rafique, Muhammad Shahid ;
Imran, Muhammad .
MATERIA-RIO DE JANEIRO, 2014, 19 (03) :197-203
[50]   Synthesis, characterization, and antimicrobial properties of copper nanoparticles [J].
Usman, Muhammad Sani ;
El Zowalaty, Mohamed Ezzat ;
Shameli, Kamyar ;
Zainuddin, Norhazlin ;
Salama, Mohamed ;
Ibrahim, Nor Azowa .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2013, 8 :4467-4478