Optimizing the Formation of Supported Lipid Bilayers from Bicellar Mixtures

被引:55
|
作者
Kolahdouzan, Kavoos [1 ]
Jackman, Joshua A. [2 ]
Yoon, Bo Kyeong [2 ]
Kim, Min Chul [2 ]
Johal, Malkiat S. [1 ]
Cho, Nam-Joon [2 ,3 ]
机构
[1] Pomona Coll, Dept Chem, 645 North Coll Ave, Claremont, CA 91711 USA
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
基金
新加坡国家研究基金会;
关键词
MEMBRANE MORPHOLOGICAL RESPONSES; QUARTZ-CRYSTAL MICROBALANCE; ATOMIC-FORCE MICROSCOPY; SILICA-WATER INTERFACE; PHOSPHOLIPID-BILAYERS; DIOLEOYLPHOSPHATIDYLCHOLINE BILAYERS; VESICLE ADSORPTION; ISOTROPIC BICELLES; DODECYL MALTOSIDE; PHOSPHORUS NMR;
D O I
10.1021/acs.langmuir.7b00210
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Supported lipid bilayers (SLBs) are widely studied model membrane platforms that are compatible with various surface-sensitive measurement techniques. SLBs are typically formed on silica-based materials, and there are numerous possible fabrication routes involving either bottom-up molecular self-assembly or vesicle adsorption and rupture. In between these two classes of fabrication strategies lies an emerging approach based on depositing quasi-two-dimensional lamellar, bicellar disks composed of a mixture of long-chain and short-chain phospholipids to promote the formation of SLBs. This approach takes advantage of the thermodynamic preference of long-chain phospholipids to form planar SLBs, whereas short-chain phospholipids have brief residence times. Although a few studies have shown that SLBs can be formed on silica-based materials from bicellar mixtures, outstanding questions remain about the self-assembly mechanism as well as the influence of the total phospholipid concentration, ratio of the two phospholipids (termed the "q-ratio"), and process of sample preparation. Herein, we address these questions through comprehensive quartz crystal microbalance-dissipation, fluorescence microscopy, and fluorescence recovery after photobleaching experiments. Our findings identify that optimal SLB formation occurs at lower total concentrations of phospholipids than previously used as short-chain phospholipids behave like membrane-destabilizing detergents at higher concentrations. Using lower phospholipid concentrations, we also discovered that the formation of SLBs proceeds through a two-step mechanism involving a critical coverage of bicellar disks akin to vesicle fusion. In addition, the results indicate that at least one cycle of freeze-thaw-vortexing is useful during the sample preparation process to produce SLBs. Taken together, the findings in this work identify optimal routes for fabricating SLBs from bicellar mixtures and reveal mechanistic details about the bicelle-mediated SLB formation process, which will aid further exploration of bicellar mixtures as tools for model membrane fabrication.
引用
收藏
页码:5052 / 5064
页数:13
相关论文
共 50 条
  • [21] Formation of Supported Lipid Bilayers on Silica Particles Studied Using Flow Cytometry
    Nordlund, Gustav
    Lonneborg, Rosa
    Brzezinski, Peter
    LANGMUIR, 2009, 25 (08) : 4601 - 4606
  • [22] Substrate Effects on the Formation Process, Structure and Physicochemical Properties of Supported Lipid Bilayers
    Tero, Ryugo
    MATERIALS, 2012, 5 (12): : 2658 - 2680
  • [23] Formation of Air-Stable Supported Lipid Monolayers and Bilayers
    Oberts, B. P.
    Blanchard, G. J.
    LANGMUIR, 2009, 25 (05) : 2962 - 2970
  • [24] Membrane Reconstitution of Monoamine Oxidase Enzymes on Supported Lipid Bilayers
    Wang, Liulin
    Biswas, Kabir H.
    Yoon, Bo Kyeong
    Kawakami, Lisa M.
    Park, Soohyun
    Groves, Jay T.
    Li, Lin
    Huang, Wei
    Cho, Nam-Joon
    LANGMUIR, 2018, 34 (36) : 10764 - 10773
  • [25] The formation of lipid bilayers on surfaces
    Gromelski, Sandra
    Saraiva, Ana M.
    Krastev, Rumen
    Brezesinski, Gerald
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2009, 74 (02) : 477 - 483
  • [26] Bilayer Edges Catalyze Supported Lipid Bilayer Formation
    Weirich, Kimberly L.
    Israelachvili, Jacob N.
    Fygenson, D. Kuchnir
    BIOPHYSICAL JOURNAL, 2010, 98 (01) : 85 - 92
  • [27] Formation of Highly Negatively Charged Supported Lipid Bilayers on a Silica Surface: Effects of Ionic Strength and Osmotic Stress
    Xu, Xiaojia
    Tan, Shuwen
    Fu, Yao
    Xing, Wenlong
    Song, Yaping
    Liu, Xiaoyan
    Fang, Yu
    LANGMUIR, 2025, 41 (04) : 2619 - 2628
  • [28] γ-Hemolysin oligomeric structure and effect of its formation on supported lipid bilayers: An AFM Investigation
    Alessandrini, Andrea
    Viero, Gabriella
    Dalla Serra, Mauro
    Prevost, Gilles
    Facci, Paolo
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2013, 1828 (02): : 405 - 411
  • [29] Controlling the pathway of formation of supported lipid bilayers of DMPC by varying the sodium chloride concentration
    Boudard, S
    Seantier, B
    Breffa, C
    Decher, G
    Félix, O
    THIN SOLID FILMS, 2006, 495 (1-2) : 246 - 251
  • [30] Formation and Colloidal Stability of DMPC Supported Lipid Bilayers on SiO2 Nanobeads
    Savarala, Sushma
    Ahmed, Selver
    Ilies, Marc A.
    Wunder, Stephanie L.
    LANGMUIR, 2010, 26 (14) : 12081 - 12088