Radial density profile and stability of capillary discharge plasma waveguides of lengths up to 40 cm

被引:13
作者
Turner, M. [1 ]
Gonsalves, A. J. [1 ]
Bulanov, S. S. [1 ]
Benedetti, C. [1 ]
Bobrova, N. A. [2 ]
Gasilov, V. A. [2 ]
Sasorov, P. V. [2 ,3 ]
Korn, G. [3 ]
Nakamura, K. [1 ]
van Tilborg, J. [1 ]
Geddes, C. G. [1 ]
Schroeder, C. B. [1 ]
Esarey, E. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[2] Keldysh Inst Appl Math RAS, Moscow, Russia
[3] ELI Beamlines, Dolni Brezany, Czech Republic
来源
HIGH POWER LASER SCIENCE AND ENGINEERING | 2021年 / 9卷
关键词
capillary plasma waveguide; laser-driven plasma wakefield acceleration; plasma telescope; matched laser guiding;
D O I
10.1017/hpl.2021.6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 mu m to 2 mm and lengths of 9 to 40 cm. To the best of the authors' knowledge, 40 cm is the longest discharge capillary plasma waveguide to date. This length is important for >= 10 GeV electron energy gain in a single laser-driven plasma wakefield acceleration stage. Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to < 0.2% and their average on-axis plasma electron density to < 1%. These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.
引用
收藏
页数:10
相关论文
共 42 条
[1]   An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators [J].
Benedetti, C. ;
Schroeder, C. B. ;
Geddes, C. G. R. ;
Esarey, E. ;
Leemans, W. P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (01)
[2]   Quasi-matched propagation of ultra-short, intense laser pulses in plasma channels [J].
Benedetti, C. ;
Schroeder, C. B. ;
Esarey, E. ;
Leemans, W. P. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[3]  
Benedetti C, 2010, AIP CONF PROC, V1299, P250, DOI 10.1063/1.3520323
[4]  
Boborova N.A., 1996, PHYS REP, V22, P349
[5]   Simulations of a hydrogen-filled capillary discharge waveguide [J].
Bobrova, NA ;
Esaulov, AA ;
Sakai, JI ;
Sasorov, PV ;
Spence, DJ ;
Butler, A ;
Hooker, SM ;
Bulanov, SV .
PHYSICAL REVIEW E, 2002, 65 (01) :1-016407
[6]   Numerical studies on capillary discharges as focusing elements for electron beams [J].
Brentegani, E. ;
Anania, M. P. ;
Atzeni, S. ;
Biagioni, A. ;
Chiadroni, E. ;
Croia, M. ;
Ferrario, M. ;
Filippi, F. ;
Marocchino, A. ;
Mostacci, A. ;
Pompili, R. ;
Romeo, S. ;
Schiavi, A. ;
Zigler, A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 909 :404-407
[7]   Modeling of a square pulsed capillary discharge waveguide for interferometry measurements [J].
Broks, B. H. P. ;
Van Dijk, W. ;
van der Mullen, J. J. A. W. ;
Gonsalves, A. J. ;
Rowlands-Rees, T. P. ;
Hooker, S. M. .
PHYSICS OF PLASMAS, 2007, 14 (02)
[8]   Nonlocal-thermal-equilibrium model of a pulsed capillary discharge waveguide [J].
Broks, BHP ;
Garloff, K ;
van der Mullen, JJAM .
PHYSICAL REVIEW E, 2005, 71 (01)
[9]   Demonstration of a collisionally excited optical-field-ionization XUV laser driven in a plasma waveguide [J].
Butler, A ;
Gonsalves, AJ ;
McKenna, CM ;
Spence, DJ ;
Hooker, SM ;
Sebban, S ;
Mocek, T ;
Bettaibi, I ;
Cros, B .
PHYSICAL REVIEW LETTERS, 2003, 91 (20) :1-205001
[10]   Overview of plasma lens experiments and recent results at SPARC_LAB [J].
Chiadroni, E. ;
Anania, M. P. ;
Bellaveglia, M. ;
Biagioni, A. ;
Bisesto, F. ;
Brentegani, E. ;
Cardelli, F. ;
Cianchi, A. ;
Costa, G. ;
Di Giovenale, D. ;
Di Pirro, G. ;
Ferrario, M. ;
Filippi, F. ;
Gallo, A. ;
Giribono, A. ;
Marocchino, A. ;
Mostacci, A. ;
Piersanti, L. ;
Pompili, R. ;
Rosenzweig, J. B. ;
Rossi, A. R. ;
Scifo, J. ;
Shpakov, V. ;
Vaccarezza, C. ;
Villa, F. ;
Zigler, A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 909 :16-20