Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection

被引:148
|
作者
Hu, Jiao [1 ]
Gui, Wenyong [1 ]
Heidari, Ali Asghar [2 ]
Cai, Zhennao [1 ]
Liang, Guoxi [3 ]
Chen, Huiling [1 ]
Pan, Zhifang [4 ]
机构
[1] Wenzhou Univ, Dept Comp Sci & Artificial Intelligence, Wenzhou 325035, Peoples R China
[2] Univ Tehran, Sch Surveying & Geospatial Engn, Coll Engn, Tehran, Iran
[3] Wenzhou Polytech, Dept Informat Technol, Wenzhou 325035, Peoples R China
[4] Wenzhou Med Univ, Affiliated Hosp 1, Wenzhou 325000, Peoples R China
基金
中国国家自然科学基金;
关键词
Slime mould algorithm; Swarm intelligence; Global optimization; Feature selection; SALP SWARM ALGORITHM; WHALE OPTIMIZATION; EXTREMAL OPTIMIZATION; INSPIRED OPTIMIZER; STEEPEST DESCENT; PREDICTION; DESIGN; CLASSIFICATION; INTELLIGENCE; STRATEGY;
D O I
10.1016/j.knosys.2021.107761
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The slime mould algorithm (SMA) is a logical swarm-based stochastic optimizer that is easy to understand and has a strong optimization capability. However, the SMA is not suitable for solving multimodal and hybrid functions. Therefore, in the present study, to enhance the SMA and maintain population diversity, a dispersed foraging SMA (DFSMA) with a dispersed foraging strategy is proposed. We conducted extensive experiments based on several functions in IEEE CEC2017. The DFSMA were compared with 11 other meta-heuristic algorithms (MAs), 10 advanced algorithms, and 3 recently proposed algorithms. Moreover, to conduct more systematic data analyses, the experimental results were further evaluated using the Wilcoxon signed-rank test. The DFSMA was shown to outperform other optimizers in terms of convergence speed and accuracy. In addition, the binary DFSMA (BDFSMA) was obtained using the transform function. The performance of the BDFSMA was evaluated on 12 datasets in the UCI repository. The experimental results reveal that the BDFSMA performs better than the original SMA, and that, compared with other optimization algorithms, it improves classification accuracy and reduces the number of selected features, demonstrating its practical engineering value in spatial search and feature selection. (c) 2021 Published by Elsevier B.V.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] A Novel Wrapper-Based Optimization Algorithm for the Feature Selection and Classification
    Talpur, Noureen
    Abdulkadir, Said Jadid
    Hasan, Mohd Hilmi
    Alhussian, Hitham
    Alwadain, Ayed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 5799 - 5820
  • [2] Wrapper-based Feature Selection for Imbalanced Data using Binary Queuing Search Algorithm
    Thaher, Thaer
    Mafarja, Majdi
    Abdalhaq, Baker
    Chantar, Hamouda
    2019 2ND INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2019, : 318 - 323
  • [3] Bat optimization algorithm for wrapper-based feature selection and performance improvement of android malware detection
    Varma, Ravi Kiran P.
    Mallidi, S. Kumar Reddy
    Jhansi, Santosh K.
    Latha, Pushpa D.
    IET NETWORKS, 2021, 10 (03) : 131 - 140
  • [4] A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm
    Tarkhaneh, Omid
    Thanh Thi Nguyen
    Mazaheri, Samaneh
    INFORMATION SCIENCES, 2021, 565 : 278 - 305
  • [5] Simultaneous SVM Parameters and Feature Selection Optimization Based on Improved Slime Mould Algorithm
    Qiu, Yihui
    Li, Ruoyu
    Zhang, Xinqiang
    IEEE ACCESS, 2024, 12 : 18215 - 18236
  • [6] Emboli detection using a wrapper-based feature selection algorithm with multiple classifiers
    Sakar, Betul Erdogdu
    Serbes, Gorkem
    Aydin, Nizamettin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [7] Wrapper-Based Feature Selection for Medical Diagnosis: The BTLBO-KNN Algorithm
    Seghir, Fateh
    Drif, Ahlem
    Selmani, Saadeddine
    Cherifi, Hocine
    IEEE ACCESS, 2023, 11 : 61368 - 61389
  • [8] Emboli detection using a wrapper-based feature selection algorithm with multiple classifiers
    Sakar, Betul Erdogdu
    Serbes, Gorkem
    Aydin, Nizamettin
    Biomedical Signal Processing and Control, 2022, 71
  • [9] Gradient-based optimizer improved by Slime Mould Algorithm for global optimization and feature selection for diverse computation problems
    Ewees, Ahmed A.
    Ismail, Fatma H.
    Sahlol, Ahmed T.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [10] Software defect prediction using wrapper-based dynamic arithmetic optimization for feature selection
    Anand, Kunal
    Jena, Ajay Kumar
    Das, Himansu
    Askar, S. S.
    Abouhawwash, Mohamed
    CONNECTION SCIENCE, 2025, 37 (01)