Using Biomass Gasification Mineral Residue as Catalyst to Produce Light Olefins from CO, CO2, and H2 Mixtures

被引:5
作者
ten Have, Iris C. [1 ]
van den Brink, Robin Y. [1 ]
Marie-Rose, Stephane C. [2 ]
Meirer, Florian [1 ]
Weckhuysen, Bert M. [1 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Inorgan Chem & Catalysis, Univ Weg 99, NL-3584 CG Utrecht, Netherlands
[2] Enerkem Inc, Westbury Innovat Ctr, 551 Chemin Tuileries, Westbury, PQ J0B 1R0, Canada
关键词
biomass residue; CO2; hydrogenation; Fischer-Tropsch; iron; olefins; FISCHER-TROPSCH SYNTHESIS; STRUCTURE EVOLUTION; SUPPORTED PD; HYDROGENATION; CARBON; SYNGAS; HYDROCARBONS; SPECTROSCOPY; PERFORMANCE; CHAR;
D O I
10.1002/cssc.202200436
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gasification is a process to transform solids, such as agricultural and municipal waste, into gaseous feedstock for making transportation fuels. The so-called coarse solid residue (CSR) that remains after this conversion process is currently discarded as a process solid residue. In the context of transitioning from a linear to a circular society, the feasibility of using the solid process residue from waste gasification as a solid catalyst for light olefin production from CO, CO2, and H-2 mixtures was investigated. This CSR-derived catalyst converted biomass-derived syngas, a H-2-poor mixture of CO, CO2, H-2, and N-2, into methane (57 %) and C-2-C-4 olefins (43 %) at 450 degrees C and 20 bar. The main active ingredient of CSR was Fe, and it was discovered with operando X-ray diffraction that metallic Fe, present after pre-reduction in H-2, transformed into an Fe carbide phase under reaction conditions. The increased formation of Fe carbides correlated with an increase in CO conversion and olefin selectivity. The presence of alkali elements, such as Na and K, in CSR-derived catalyst increased olefin production as well.
引用
收藏
页数:10
相关论文
共 60 条
[41]  
UNFCCC, 2015, THE PARIS AGREEMENT
[42]  
van de Loosdrecht J., 2013, FISCHER TROPSCH SYNT, V7, P525
[43]   Cobalt nanocrystals on carbon nanotubes in the Fischer-Tropsch synthesis: Impact of support oxidation [J].
van Deelen, T. W. ;
Yoshida, H. ;
Oord, R. ;
Zecevic, J. ;
Weckhuysen, B. M. ;
de Jong, K. P. .
APPLIED CATALYSIS A-GENERAL, 2020, 593
[44]   CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts [J].
Visconti, Carlo Giorgio ;
Martinelli, Michela ;
Falbo, Leonardo ;
Fratalocchi, Laura ;
Lietti, Luca .
CATALYSIS TODAY, 2016, 277 :161-170
[45]   The renaissance of the Sabatier reaction and its applications on Earth and in space [J].
Vogt, Charlotte ;
Monai, Matteo ;
Kramer, Gert Jan ;
Weckhuysen, Bert M. .
NATURE CATALYSIS, 2019, 2 (03) :188-197
[46]  
Vogt C, 2018, NAT CATAL, V1, P127, DOI 10.1038/s41929-017-0016-y
[47]   Ni-Mn catalysts on silica-modified alumina for CO2 methanation [J].
Vrijburg, Wilbert L. ;
Garbarino, Gabriella ;
Chen, Wei ;
Parastaev, Alexander ;
Longo, Alessandro ;
Pidko, Evgeny A. ;
Hensen, Emiel J. M. .
JOURNAL OF CATALYSIS, 2020, 382 :358-371
[48]   Efficient Base-Metal NiMn/TiO2 Catalyst for CO2 Methanation [J].
Vrijburg, Wilbert L. ;
Moioli, Emanuele ;
Chen, Wei ;
Zhang, Min ;
Terlingen, Bas J. P. ;
Zijlstra, Bart ;
Filot, Ivo A. W. ;
Zuttel, Andreas ;
Pidko, Evgeny A. ;
Hensen, Emiel J. M. .
ACS CATALYSIS, 2019, 9 (09) :7823-7839
[49]   Recent advances in catalytic hydrogenation of carbon dioxide [J].
Wang, Wei ;
Wang, Shengping ;
Ma, Xinbin ;
Gong, Jinlong .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (07) :3703-3727
[50]   Highly Selective Olefin Production from CO2Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives [J].
Xu, Yao ;
Zhai, Peng ;
Deng, Yuchen ;
Xie, Jinglin ;
Liu, Xi ;
Wang, Shuai ;
Ma, Ding .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (48) :21736-21744