Monotone finite point method for non-equilibrium radiation diffusion equations

被引:14
|
作者
Huang, Zhongyi [1 ]
Li, Ye [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Tailored finite point method; Monotonicity; Nonlinear parabolic equation; Non-equilibrium; Radiation diffusion; TIME INTEGRATION; SYSTEMS; INTERFACE; TRANSPORT; MESHES;
D O I
10.1007/s10543-015-0573-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose the monotone tailored-finite-point method for solving the non-equilibrium radiation diffusion equations. We first give two tailored finite point schemes for the nonlinear parabolic equation in one-dimensional case, then extend the idea to solve the radiation diffusion problem in 1D as well as 2D. By using variable substitute, our method satisfies the discrete maximum principle automatically, thus preserves the properties of monotonicity and positivity. Numerical results show that our method can capture the sharp front and can be accommodated to discontinues diffusion coefficient.
引用
收藏
页码:659 / 679
页数:21
相关论文
共 50 条
  • [1] Monotone finite point method for non-equilibrium radiation diffusion equations
    Zhongyi Huang
    Ye Li
    BIT Numerical Mathematics, 2016, 56 : 659 - 679
  • [2] Moving mesh finite difference solution of non-equilibrium radiation diffusion equations
    Yang, Xiaobo
    Huang, Weizhang
    Qiu, Jianxian
    NUMERICAL ALGORITHMS, 2019, 82 (04) : 1409 - 1440
  • [3] An efficient nonlinear solution method for non-equilibrium radiation diffusion
    Knoll, DA
    Rider, WJ
    Olson, GL
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1999, 63 (01) : 15 - 29
  • [4] Adaptive Implicit Non-Equilibrium Radiation Diffusion
    Philip, B.
    Wang, Z.
    Berrill, M.
    Rodriguez, M.
    Pernice, M.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2012, 2013, 474 : 271 - 276
  • [5] A moving mesh finite difference method for equilibrium radiation diffusion equations
    Yang, Xiaobo
    Huang, Weizhang
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 661 - 677
  • [6] Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
    Cui, Xia
    Yuan, Guang-wei
    Shen, Zhi-jun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 313 : 415 - 429
  • [7] MONOTONE FINITE VOLUME SCHEMES OF NONEQUILIBRIUM RADIATION DIFFUSION EQUATIONS ON DISTORTED MESHES
    Sheng, Zhiqiang
    Yue, Jingyan
    Yuan, Guangwei
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04) : 2915 - 2934
  • [8] Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion
    Mousseau, VA
    Knoll, DA
    Rider, WJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) : 743 - 765
  • [9] Weighted Interior Penalty Method with Semi-Implicit Integration Factor Method for Non-Equilibrium Radiation Diffusion Equation
    Zhang, Rongpei
    Yu, Xijun
    Zhu, Jiang
    Loula, Abimael F. D.
    Cui, Xia
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (05) : 1287 - 1303
  • [10] A monotone finite volume element scheme for diffusion equations on
    Nie, Cunyun
    Fang, Jianglin
    Shu, Shi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 153 : 225 - 236