Localised Module Frames and Wannier Bases from Groupoid Morita Equivalences

被引:5
作者
Bourne, Chris [1 ,2 ]
Mesland, Bram [3 ]
机构
[1] Tohoku Univ, WPI AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] RIKEN iTHEMS, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[3] Leiden Univ, Math Inst, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
关键词
Operator algebras; Groupoid and Morita equivalence; Gabor analysis; Wannier basis; THEOREM; CONTINUITY;
D O I
10.1007/s00041-021-09873-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following the operator algebraic approach to Gabor analysis, we construct frames of translates for the Hilbert space localisation of the Morita equivalence bimodule arising from a groupoid equivalence between Hausdorff groupoids, where one of the groupoids is etale and with a compact unit space. For finitely generated and projective submodules, we show these frames are orthonormal bases if and only if the module is free. We then apply this result to the study of localised Wannier bases of spectral subspaces of Schrodinger operators with atomic potentials supported on (aperiodic) Delone sets. The noncommutative Chern numbers provide a topological obstruction to fast-decaying Wannier bases and we show this result is stable under deformations of the underlying Delone set.
引用
收藏
页数:39
相关论文
共 41 条
[1]   Gabor duality theory for Morita equivalent C*-algebras [J].
Austad, Are ;
Jakobsen, Mads S. ;
Luef, Franz .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (10)
[2]   Heisenberg Modules as Function Spaces [J].
Austad, Are ;
Enstad, Ulrik .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (02)
[3]   Spectral continuity for aperiodic quantum systems I. General theory [J].
Beckus, Siegfried ;
Bellissard, Jean ;
De Nittis, Giuseppe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (11) :2917-2977
[4]   Continuity of the Spectrum of a Field of Self-Adjoint Operators [J].
Beckus, Siegfried ;
Bellissard, Jean .
ANNALES HENRI POINCARE, 2016, 17 (12) :3425-3442
[5]  
Bellissard J., 2000, CIRM MONOGRAPH SERIE CRM MONOGRAPH SERIES, V13, P207
[6]  
Bellissard J., 1992, NUMBER THEORY PHYS
[7]   MAGNETIC TWISTED ACTIONS ON GENERAL ABELIAN C*-ALGEBRAS [J].
Belmonte, Fabian ;
Lein, Max ;
Mantoiu, Marius .
JOURNAL OF OPERATOR THEORY, 2013, 69 (01) :33-58
[8]   Frames of translates with prescribed fine structure in shift invariant spaces [J].
Benac, Maria J. ;
Massey, Pedro G. ;
Stojanoff, Demetrio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) :2631-2671
[9]  
Blackadar B., 1991, J. Oper. Theory, V26, P255
[10]  
Blackadar B. K, 1998, -Theory for Operator Algebras