Embeddings of low-dimensional strange attractors: Topological invariants and degrees of freedom

被引:7
作者
Romanazzi, Nicola [1 ]
Lefranc, Marc
Gilmore, Robert
机构
[1] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA
[2] Univ Sci & Tech Lille Flandres Artois, Ctr Etud & Rech Lasers & Applicat, CNRS, UMR 8523,Lab Phys Lasers Atomes Mol, F-59655 Villeneuve Dascq, France
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 06期
关键词
D O I
10.1103/PhysRevE.75.066214
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
When a low-dimensional chaotic attractor is embedded in a three-dimensional space its topological properties are embedding-dependent. We show that there are just three topological properties that depend on the embedding: Parity, global torsion, and knot type. We discuss how they can change with the embedding. Finally, we show that the mechanism that is responsible for creating chaotic behavior is an invariant of all embeddings. These results apply only to chaotic attractors of genus one, which covers the majority of cases in which experimental data have been subjected to topological analysis. This means that the conclusions drawn from previous analyses, for example that the mechanism generating chaotic behavior is a Smale horseshoe mechanism, a reverse horseshoe, a gateau roule, an S-template branched manifold, etc., are not artifacts of the embedding chosen for the analysis.
引用
收藏
页数:9
相关论文
共 52 条
[1]  
[Anonymous], SYMMETRY CHAOS
[2]   Differential equations with multispiral attractors [J].
Aziz-Alaoui, MA .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (06) :1009-1039
[3]  
Birman J., 1983, Contemp. Math., V20, P1, DOI DOI 10.1090/CONM/020/718132
[4]   KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS [J].
BIRMAN, JS ;
WILLIAMS, RF .
TOPOLOGY, 1983, 22 (01) :47-82
[5]   Experimental observation of a chaotic attractor with a reverse horseshoe topological structure [J].
Boulant, G ;
Bielawski, S ;
Derozier, D ;
Lefranc, M .
PHYSICAL REVIEW E, 1997, 55 (04) :R3801-R3804
[6]   Horseshoe templates with global torsion in a driven laser [J].
Boulant, G ;
Lefranc, M ;
Bielawski, S ;
Derozier, D .
PHYSICAL REVIEW E, 1997, 55 (05) :5082-5091
[7]  
BOULANT G, 1998, P 4 EXP CHAOS C, P121
[8]   COMPUTING THE LYAPUNOV SPECTRUM OF A DYNAMIC SYSTEM FROM AN OBSERVED TIME-SERIES [J].
BROWN, R ;
BRYANT, P ;
ABARBANEL, HDI .
PHYSICAL REVIEW A, 1991, 43 (06) :2787-2806
[9]   Estimating generating partitions of chaotic systems by unstable periodic orbits [J].
Davidchack, RL ;
Lai, YC ;
Bollt, EM ;
Dhamala, M .
PHYSICAL REVIEW E, 2000, 61 (02) :1353-1356
[10]   TOPOLOGICAL AND METRIC ANALYSIS OF HETEROCLINIC CRISIS IN LASER CHAOS [J].
FINARDI, M ;
FLEPP, L ;
PARISI, J ;
HOLZNER, R ;
BADII, R ;
BRUN, E .
PHYSICAL REVIEW LETTERS, 1992, 68 (20) :2989-2991