Plasmon-Enhanced Nonlinear Wave Mixing in Nanostructured Graphene

被引:65
作者
Cox, Joel D. [1 ]
Garcia de Abajo, F. Javier [1 ,2 ]
机构
[1] ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain
来源
ACS PHOTONICS | 2015年 / 2卷 / 02期
关键词
nonlinear optics/plasmonics; nanographene; active plasmonics; wave mixing; sum/difference frequency generation; four-wave mixing; SMALL METAL PARTICLES; NANOCRYSTALS; MICROSCOPY; COPPER;
D O I
10.1021/ph500424a
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Localized plasmons in metallic nanostructures have been widely used to enhance nonlinear optical effects due to their ability to concentrate and enhance light down to extreme-subwavelength scales. As alternatives to noble metal nanoparticles, graphene nanostructures can host long-lived plasmons that efficiently couple to light and are actively tunable via electrical doping. Here we show that doped graphene nanoislands present unique opportunities for enhancing nonlinear optical wave-mixing processes between two externally applied optical fields at the nanoscale. These small islands can support pronounced plasmons at multiple frequencies, resulting in extraordinarily high wave-mixing susceptibilities when one or more of the input or output frequencies coincide with a plasmon resonance. By varying the doping charge density in a nanoisland with a fixed geometry, enhanced wave mixing can be realized over a wide spectral range in the visible and near-infrared. We concentrate, in particular, on second- and third-order processes, including sum and difference frequency generation, as well as on four-wave mixing. Our calculations for armchair graphene triangles composed of up to several hundred carbon atoms display large wave mixing polarizabilities compared with metal nanoparticles of similar lateral size, thus supporting nanographene as an excellent material for tunable nonlinear optical nanodevices.
引用
收藏
页码:306 / 312
页数:7
相关论文
共 55 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]  
Aouani H, 2014, NAT NANOTECHNOL, V9, P290, DOI [10.1038/nnano.2014.27, 10.1038/NNANO.2014.27]
[3]  
Boyd RW, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
[4]   Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators [J].
Brar, Victor W. ;
Jang, Min Seok ;
Sherrott, Michelle ;
Lopez, Josue J. ;
Atwater, Harry A. .
NANO LETTERS, 2013, 13 (06) :2541-2547
[5]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Optical nano-imaging of gate-tunable graphene plasmons [J].
Chen, Jianing ;
Badioli, Michela ;
Alonso-Gonzalez, Pablo ;
Thongrattanasiri, Sukosin ;
Huth, Florian ;
Osmond, Johann ;
Spasenovic, Marko ;
Centeno, Alba ;
Pesquera, Amaia ;
Godignon, Philippe ;
Zurutuza Elorza, Amaia ;
Camara, Nicolas ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Koppens, Frank H. L. .
NATURE, 2012, 487 (7405) :77-81
[8]   Enhanced nonlinearities using plasmonic nanoantennas [J].
Chen, Pai-Yen ;
Argyropoulos, Christos ;
Alu, Andrea .
NANOPHOTONICS, 2012, 1 (3-4) :221-233
[9]   Electrically tunable nonlinear plasmonics in graphene nanoislands [J].
Cox, Joel D. ;
Javier Garcia de Abajo, F. .
NATURE COMMUNICATIONS, 2014, 5
[10]   Optical frequency mixing at coupled gold nanoparticles [J].
Danckwerts, Matthias ;
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2007, 98 (02)