The variable selection problem

被引:197
作者
George, EI [1 ]
机构
[1] Univ Texas, Dept MSIS, Austin, TX 78712 USA
关键词
D O I
10.2307/2669776
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of variable selection is one of the most pervasive model selection problems in statistical applications. Often referred to as the problem of subset selection, it arises when one wants to model the relationship between a variable of interest and a subset of potential explanatory variables or predictors, but there is uncertainty about which subset to use. This vignette reviews some of the key developments that have led to the wide variety of approaches for this problem.
引用
收藏
页码:1304 / 1308
页数:5
相关论文
共 58 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267, DOI [DOI 10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0_15]
[2]  
[Anonymous], ENCY STAT SCI
[3]  
[Anonymous], 1990, SUBSET SELECTION REG, DOI DOI 10.1007/978-1-4899-2939-6
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]  
Berger J.O., 1996, Bayesian Stat, V5, P25
[6]   The intrinsic Bayes factor for model selection and prediction [J].
Berger, JO ;
Pericchi, LR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :109-122
[8]   BETTER SUBSET REGRESSION USING THE NONNEGATIVE GARROTE [J].
BREIMAN, L .
TECHNOMETRICS, 1995, 37 (04) :373-384
[9]   Flexible empirical Bayes estimation for wavelets [J].
Clyde, M ;
George, EI .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 :681-698
[10]   Multiple shrinkage and subset selection in wavelets [J].
Clyde, M ;
Parmigiani, G ;
Vidakovic, B .
BIOMETRIKA, 1998, 85 (02) :391-401