Simulation of Typhoon-Induced Storm Tides and Wind Waves for the Northeastern Coast of Taiwan Using a Tide-Surge-Wave Coupled Model

被引:32
作者
Chen, Wei-Bo [1 ]
Lin, Lee-Yaw [1 ]
Jang, Jiun-Huei [2 ]
Chang, Chih-Hsin [1 ]
机构
[1] Natl Sci & Technol Ctr Disaster Reduct, New Taipei 23143, Taiwan
[2] Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 70101, Taiwan
关键词
storm tide; radiation stress; wave-induced surge; tide-surge-wave coupled model; FINITE-ELEMENT MODEL; AVEIRO PORTUGAL; BOTTOM STRESSES; SOUTHERN COAST; NORTH-SEA; INUNDATION; OCEAN; SURFACE; IMPACT; CIRCULATION;
D O I
10.3390/w9070549
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The storm tide is a combination of the astronomical tide and storm surge, which is the actual sea water level leading to flooding in low-lying coastal areas. A full coupled modeling system (Semi-implicit Eulerian-Lagrangian Finite-Element model coupled with Wind Wave Model II, SELFE-WWM-II) for simulating the interaction of tide, surge and waves based on an unstructured grid is applied to simulate the storm tide and wind waves for the northeastern coast of Taiwan. The coupled model was driven by the astronomical tide and consisted of main eight tidal constituents and the meteorological forcings (air pressure and wind stress) of typhoons. SELFE computes the depth-averaged current and water surface elevation passed to WWM-II, while WWM-II passes the radiation stress to SELFE by solving the wave action equation. Hindcasts of wind waves and storm tides for five typhoon events were developed to validate the coupled model. The detailed comparisons generally show good agreement between the simulations and measurements. The contributions of surge induced by wave and meteorological forcings to the storm tide were investigated for Typhoon Soudelor (2015) at three tide gauge stations. The results reveal that the surge contributed by wave radiation stress was 0.55 m at Suao Port due to the giant offshore wind wave (exceeding 16.0 m) caused by Typhoon Soudelor (2015) and the steep sea-bottom slope. The air pressure resulted in a 0.6 m surge at Hualien Port because of an inverted barometer effect. The wind stress effect was only slightly significant at Keelung Port, contributing 0.22 m to the storm tide. We conclude that wind waves should not be neglected when modeling typhoon-induced storm tides, especially in regions with steep sea-bottom slopes. In addition, accurate tidal and meteorological forces are also required for storm tide modeling.
引用
收藏
页数:24
相关论文
共 71 条
[1]  
Amante C., 2009, NOAA TECHNICAL MEMOR, P19, DOI 10.7289/V5C8276M
[2]  
Azevedo A., 2011, J COASTAL RES, P777
[3]  
Battjes JA., 1978, Coastal Engineering Proceeding, V32, P569, DOI [10.1061/9780872621909.034, DOI 10.1061/9780872621909.034, DOI 10.9753/ICCE.V16.32]
[4]  
Battjes JA, 1974, THESIS
[5]   The contribution of short-waves in storm surges: Two case studies in the Bay of Biscay [J].
Bertin, Xavier ;
Li, Kai ;
Roland, Aron ;
Bidlot, Jean-Raymond .
CONTINENTAL SHELF RESEARCH, 2015, 96 :1-15
[6]  
Bruneau N, 2011, J COASTAL RES, P986
[7]   Prediction of storm surges and wind waves on coastal highways in Hurricane-Prone areas [J].
Chen, Qin ;
Wang, Lixia ;
Zhao, Haihong ;
Douglass, Scott L. .
JOURNAL OF COASTAL RESEARCH, 2007, 23 (05) :1304-+
[8]   Assessment of storm surge inundation and potential hazard maps for the southern coast of Taiwan [J].
Chen, Wei-Bo ;
Liu, Wen-Cheng .
NATURAL HAZARDS, 2016, 82 (01) :591-616
[9]   Modeling Flood Inundation Induced by River Flow and Storm Surges over a River Basin [J].
Chen, Wei-Bo ;
Liu, Wen-Cheng .
WATER, 2014, 6 (10) :3182-3199
[10]   Computational investigation of typhoon-induced storm surges along the coast of Taiwan [J].
Chen, Wei-Bo ;
Liu, Wen-Cheng ;
Hsu, Ming-Hsi .
NATURAL HAZARDS, 2012, 64 (02) :1161-1185