A New Total Variation Method for Multiplicative Noise Removal

被引:254
作者
Huang, Yu-Mei [2 ,3 ,4 ]
Ng, Michael K. [1 ,2 ]
Wen, You-Wei [5 ]
机构
[1] Hong Kong Baptist Univ, Inst Computat Math, Kowloon Tong, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Ctr Math Imaging & Vis, Kowloon Tong, Hong Kong, Peoples R China
[3] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[4] Lanzhou Univ, Dept Math, Lanzhou 730000, Gansu, Peoples R China
[5] S China Agr Univ, Fac Sci, Guangzhou, Guangdong, Peoples R China
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2009年 / 2卷 / 01期
关键词
image denoising; multiplicative noise; total variation; convex function; TOTAL VARIATION MINIMIZATION; EDGE-DETECTION; SCALE-SPACE; ALGORITHM;
D O I
10.1137/080712593
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiplicative noise removal problems have attracted much attention in recent years. Unlike additive noise removal problems, the noise is multiplied to the orginal image, so almost all information of the original image may disappear in the observed image. The main aim of this paper is to propose and study a strictly convex objective function for multiplicative noise removal problems. We also incorporate the modified total variation regularization in the objective function to recover image edges. We develop an alternating minimization algorithm to find the minimizer of such an objective function efficiently and also show the convergence of the minimizing method. Our experimental results show that the quality of images denoised by the proposed method is quite good.
引用
收藏
页码:20 / 40
页数:21
相关论文
共 20 条
[1]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION .2. [J].
ALVAREZ, L ;
LIONS, PL ;
MOREL, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :845-866
[2]   A variational approach to removing multiplicative noise [J].
Aubert, Gilles ;
Aujol, Jean-Francois .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (04) :925-946
[3]  
Bertsekas D., 2003, Convex Analysis and Optimization
[4]  
Chambolle A, 2005, LECT NOTES COMPUT SC, V3757, P136, DOI 10.1007/11585978_10
[5]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[6]   An optimization-based multilevel algorithm for total variation image denoising [J].
Chan, Tony F. ;
Chen, K. E. .
MULTISCALE MODELING & SIMULATION, 2006, 5 (02) :615-645
[7]  
Coifman R. R., 1995, Lecture Notes in Statistics, P125, DOI [DOI 10.1007/978-1-4612-2544-79, DOI 10.1007/978-1-4612-2544-7_9, 10.1007/978-1-4612-2544-7]
[8]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[9]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[10]  
Goodman J. W., 2007, Speckle Phenomena in Optics: Theory and Applications