Two-Dimensional Numerical Analysis of Non-Darcy Flow Using the Lattice Boltzmann Method: Pore-Scale Heterogeneous Effects

被引:4
作者
Takeuchi, Yuto [1 ]
Takeuchi, Junichiro [1 ]
Izumi, Tomoki [2 ]
Fujihara, Masayuki [1 ]
机构
[1] Kyoto Univ, Grad Sch Agr, Sakyo Ku, Kyoto 6068502, Japan
[2] Ehime Univ, Grad Sch Agr, Matsuyama, Ehime 7908566, Japan
来源
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME | 2021年 / 143卷 / 06期
基金
日本学术振兴会;
关键词
SINGLE-PHASE FLOW; POROUS-MEDIA; FLUID-FLOW; REGIME; MODEL;
D O I
10.1115/1.4049689
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study simulates pore-scale two-dimensional flows through porous media composed of circular grains with varied pore-scale heterogeneity to analyze non-Darcy flow effects on different types of porous media using the lattice Boltzmann method. The magnitude of non-Darcy coefficients and the critical Reynolds number of non-Darcy flow were computed from the simulation results using the Forchheimer equation. Although the simulated porous materials have similar porosity and representative grain diameters, larger non-Darcy coefficients and an earlier onset of non-Darcy flow were observed for more heterogeneous porous media. The simulation results were compared with existing correlations to predict non-Darcy coefficients, and the large sensitivity of non-Darcy coefficients to pore-scale heterogeneity was identified. The pore-scale heterogeneity and resulting flow fields were evaluated using the participation number. From the computed participation numbers and visualized flow fields, a significant channeling effect for heterogeneous media in the Darcy flow regime was confirmed compared with that for homogeneous media. However, when non-Darcy flow occurs, this channeling effect was alleviated. This study characterizes non-Darcy effect with alleviation of the channeling effect quantified with an increase in participation number. Our findings indicate a strong sensitivity of magnitude and onset of non-Darcy effect to pore-scale heterogeneity and imply the possibility of evaluating non-Darcy effect through numerical analysis of the channeling effect.
引用
收藏
页数:9
相关论文
共 44 条
  • [1] Inertial effects on fluid flow through disordered porous media
    Andrade, JS
    Costa, UMS
    Almeida, MP
    Makse, HA
    Stanley, HE
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (26) : 5249 - 5252
  • [2] [Anonymous], 2007, THESIS U GENEVA GENE
  • [3] [Anonymous], 2017, A Pore-scale Perspective
  • [4] Barree R. D., 2004, SPE, DOI 10.2118/89325-ms
  • [5] Bear J., 1972, DYNAMICS FLUIDS PORO
  • [6] A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS
    BHATNAGAR, PL
    GROSS, EP
    KROOK, M
    [J]. PHYSICAL REVIEW, 1954, 94 (03): : 511 - 525
  • [7] A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection-Diffusion Equations
    Chai, Zhenhua
    Shi, Baochang
    Guo, Zhaoli
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (01) : 355 - 390
  • [8] Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor
    Chai, Zhenhua
    Zhao, T. S.
    [J]. PHYSICAL REVIEW E, 2012, 86 (01):
  • [9] Non-Darcy flow in disordered porous media: A lattice Boltzmann study
    Chai, Zhenhua
    Shi, Baochang
    Lu, Jianhua
    Guo, Zhaoli
    [J]. COMPUTERS & FLUIDS, 2010, 39 (10) : 2069 - 2077
  • [10] The effect of pore structure on non-Darcy flow in porous media using the lattice Boltzmann method
    Cheng, Zhilin
    Ning, Zhengfu
    Wang, Qing
    Zeng, Yan
    Qi, Rongrong
    Huang, Liang
    Zhang, Wentong
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 172 : 391 - 400