Modified projective synchronization of distributive fractional order complex dynamic networks with model uncertainty via adaptive control

被引:32
作者
Aadhithiyan, S. [1 ]
Raja, R. [2 ]
Zhu, Q. [3 ,4 ]
Alzabut, J. [5 ]
Niezabitowski, M. [6 ]
Lim, C. P. [7 ]
机构
[1] Alagappa Univ, Dept Math, Karaikkudi 630004, Tamil Nadu, India
[2] Alagappa Univ, Ramanujan Ctr Higher Math, Karaikkudi 630004, Tamil Nadu, India
[3] Hunan Normal Univ, Sch Math & Stat, Changsha 410081, Hunan, Peoples R China
[4] Chengdu Univ, Sch Informat Sci & Engn, Chengdu 610106, Peoples R China
[5] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 12435, Saudi Arabia
[6] Silesian Tech Univ, Dept Automat Control & Robot, Fac Automat Control Elect & Comp Sci, Akad 16, PL-44100 Gliwice, Poland
[7] Deakin Univ, Inst Intelligent Syst Res & Innovat, Geelong, Vic, Australia
关键词
Projective synchronization; Distributive fractional order; Complex dynamical networks; Model uncertainty; Adaptive control; NEURAL-NETWORKS; LAG SYNCHRONIZATION; STABILITY; SYSTEMS;
D O I
10.1016/j.chaos.2021.110853
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Adaptive modified projective function synchronization of non-linear distributive fractional order complex dynamical networks (DFCDN) is addressed in this paper. Firstly, we have created a model for DFCDN with model uncertainty, external disturbances and uncertain parameters. Based on the Laplace and inverse Laplace transform property of distributive order fractional differential equations and Lyapunov stability theory, we realize the projective synchronization between the DFCDN system, according to the given scaling function by using the novel adaptive controller that we have constructed. Finally two numerical examples and simulations are given to show our proposed work is more realistic and more effective than the existing ones in the literature. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 44 条
[1]   Identification of complex order-distributions [J].
Adams, J. L. ;
Hartley, T. T. ;
Lorenzo, C. F. .
JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) :1375-1388
[2]   On a nonlinear distributed order fractional differential equation [J].
Atanackovic, Teodor M. ;
Oparnica, Ljubica ;
Pihpovic, Stevan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :590-608
[3]   Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod [J].
Atanackovica, T. M. ;
Pilipovic, S. ;
Zorica, D. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (02) :175-190
[4]   Impulsive effects on competitive neural networks with mixed delays: Existence and exponential stability analysis [J].
Balasundaram, K. ;
Raja, R. ;
Pratap, A. ;
Chandrasekaran, S. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 155 :290-302
[5]  
Cao W, NONLINEAR ANAL-HYBRI, V39
[6]  
Ding K, IEEE T FUZZY SYST, P2021, DOI [10.1109/TFUZZ.2021.3065524, DOI 10.1109/TFUZZ.2021.3065524]
[7]  
Ding K, 2020, IEEE T CIRCUITS SYST
[8]  
Du H, 2019, PHYSICA A, V526, P120
[9]  
Fang J, 2020, IEEE ACCESS, V8
[10]   Asymptotic stability of distributed order nonlinear dynamical systems [J].
Fernandez-Anaya, G. ;
Nava-Antonio, G. ;
Jamous-Galante, J. ;
Munoz-Vega, R. ;
Hernandez-Martinez, E. G. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :541-549