Coherent spin-photon coupling using a resonant exchange qubit

被引:175
|
作者
Landig, A. J. [1 ]
Koski, J. V. [1 ]
Scarlino, P. [1 ]
Mendes, U. C. [2 ,3 ]
Blais, A. [2 ,3 ,4 ]
Reichl, C. [1 ]
Wegscheider, W. [1 ]
Wallraff, A. [1 ]
Ensslin, K. [1 ]
Ihn, T. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Phys, Zurich, Switzerland
[2] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ, Canada
[3] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ, Canada
[4] Canadian Inst Adv Res, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
CIRCUIT QUANTUM ELECTRODYNAMICS; SINGLE-ELECTRON; SILICON; DOTS;
D O I
10.1038/s41586-018-0365-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions between distant spin qubits is to use photons as carriers of quantum information. Here we demonstrate strong coupling between single microwave photons in a niobium titanium nitride high-impedance resonator and a three-electron spin qubit (also known as a resonant exchange qubit) in a gallium arsenide device consisting of three quantum dots. We observe the vacuum Rabi mode splitting of the resonance of the resonator, which is a signature of strong coupling; specifically, we observe a coherent coupling strength of about 31 megahertz and a qubit decoherence rate of about 20 megahertz. We can tune the decoherence electrostatically to obtain a minimal decoherence rate of around 10 megahertz for a coupling strength of around 23 megahertz. We directly measure the dependence of the qubit-photon coupling strength on the tunable electric dipole moment of the qubit using the 'AC Stark' effect. Our demonstration of strong qubit-photon coupling for a three-electron spin qubit is an important step towards coherent long-distance coupling of spin qubits.
引用
收藏
页码:179 / 184
页数:6
相关论文
共 50 条
  • [1] Coherent spin–photon coupling using a resonant exchange qubit
    A. J. Landig
    J. V. Koski
    P. Scarlino
    U. C. Mendes
    A. Blais
    C. Reichl
    W. Wegscheider
    A. Wallraff
    K. Ensslin
    T. Ihn
    Nature, 2018, 560 : 179 - 184
  • [2] Spin-Photon Coupling for Atomic Qubit Devices in Silicon
    Osika, Edyta N.
    Kocsis, Sacha
    Hsueh, Yu-Ling
    Monir, Serajum
    Chua, Cassandra
    Lam, Hubert
    Voisin, Benoit
    Simmons, Michelle Y.
    Rogge, Sven
    Rahman, Rajib
    PHYSICAL REVIEW APPLIED, 2022, 17 (05)
  • [3] Spin-photon coupling
    Horiuchi, Noriaki
    NATURE PHOTONICS, 2018, 12 (05) : 254 - 254
  • [4] Microwave dual-mode resonators for coherent spin-photon coupling
    Bonizzoni, C.
    Troiani, F.
    Ghirri, A.
    Affronte, M.
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (19)
  • [5] A coherent spin-photon interface in silicon
    Mi, X.
    Benito, M.
    Putz, S.
    Zajac, D. M.
    Taylor, J. M.
    Burkard, Guido
    Petta, J. R.
    NATURE, 2018, 555 (7698) : 599 - +
  • [6] Strong spin-photon coupling in silicon
    Samkharadze, N.
    Zheng, G.
    Kalhor, N.
    Brousse, D.
    Sammak, A.
    Mendes, U. C.
    Blais, A.
    Scappucci, G.
    Vandersypen, L. M. K.
    SCIENCE, 2018, 359 (6380) : 1123 - 1126
  • [7] Enhancing spin-photon coupling with a micromagnet
    Hei, Xin-Lei
    Dong, Xing-Liang
    Chen, Jia-Qiang
    Shen, Cai-Peng
    Qiao, Yi-Fan
    Li, Peng-Bo
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [8] Field-based design of a resonant dielectric antenna for coherent spin-photon interfaces
    Li, Linsen
    Choi, Hyeongrak
    Heuck, Mikkel
    Englund, Dirk
    OPTICS EXPRESS, 2021, 29 (11) : 16469 - 16476
  • [9] Field-based Design of a Resonant Dielectric Antenna for Coherent Spin-Photon Interfaces
    Li, Linsen
    Choi, Hyeongrak
    Heuck, Mikkel
    Englund, Dirk
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [10] Resonant exchange operation in triple-quantum-dot qubits for spin-photon transduction
    Pan, Andrew
    Keating, Tyler E.
    Gyure, Mark F.
    Pritchett, Emily J.
    Quinn, Samuel
    Ross, Richard S.
    Ladd, Thaddeus D.
    Kerckhoff, Joseph
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03):