Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters

被引:30
作者
Nejad, Reza Masoudi [1 ]
Sina, Nima [2 ]
Moghadam, Danial Ghahremani [3 ]
Branco, Ricardo [4 ]
Macek, Wojciech [5 ]
Berto, Filippo [6 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Islamic Azad Univ, Dept Mech Engn, Najafabad Branch, Esfahan, Iran
[3] Quchan Univ Technol, Fac Engn, Dept Mech Engn, Quchan, Iran
[4] Univ Coimbra, Dept Mech Engn, CEMMPRE, Coimbra, Portugal
[5] Gdansk Univ Technol, Fac Mech Engn & Ship Technol, 11-12 Gabriela Narutowicza, PL-80233 Gdansk, Poland
[6] NTNU Norwegian Univ Sci & Technol, Dept Mech & Ind Engn, Trondheim, Norway
关键词
Friction stir welding; Artificial neural network; Fatigue life; Aluminum alloy; Fracture toughness; MECHANICAL-PROPERTIES; FRACTURE-TOUGHNESS; VICKERS MICROHARDNESS; GENETIC ALGORITHM; TENSILE-STRENGTH; CRACK GROWTH; FSW JOINTS; BEHAVIOR; MICROSTRUCTURE; SPEED;
D O I
10.1016/j.ijfatigue.2022.106840
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, the fracture behavior and fatigue crack growth rate of the 2024-T351 aluminum alloy has been investigated. At first, the 2024-T351 aluminum alloys have been welded using friction stir welding procedure and the fracture toughness and fatigue crack growth rate of the CT specimens have been studied experimentally based on ASTM standards. After that, in order to predict fatigue crack growth rate and fracture toughness, artificial neural network is used. To obtain the best neuron number in the hidden layer of the artificial neural network, different neuron numbers are tested and the best network based on the performance is selected. Then the fitting method is applied and the fitted surfaces that illustrate the behavior of welding are shown and the results of artificial neural network and fitting method are compared. Also, multi-objective optimization algo-rithm is used to obtain the best welding parameters and finally sensitivity analysis is applied to measure the effect of rotational and traverse speeds on the fracture toughness and fatigue crack growth rate.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Modelling and optimization of submerged friction stir welding parameters for AA6061-T6 alloy using RSM [J].
Rathinasuriyan, C. ;
Kumar, V. S. Senthil .
KOVOVE MATERIALY-METALLIC MATERIALS, 2016, 54 (04) :297-304
[42]   Multiobjective Optimization of Friction Stir Welding Process Parameters on Aluminum Alloy AA 5083 Using Taguchi-Based Grey Relation Analysis [J].
Vijayan, Sundaravel ;
Raju, R. ;
Rao, S. R. K. .
MATERIALS AND MANUFACTURING PROCESSES, 2010, 25 (11) :1206-1212
[43]   Multi-Objective Optimization of MIG Welding and Preheat Parameters for 6061-T6 Al Alloy T-Joints Using Artificial Neural Networks Based on FEM [J].
Shao, Qing ;
Tan, Fuxing ;
Li, Kai ;
Yoshino, Tatsuo ;
Guo, Guikai .
COATINGS, 2021, 11 (08)
[44]   Process Parameters Optimization of Friction Stir Welding of 6005A-T6 Aluminum Alloy Using Taguchi Technique [J].
Zhongwei Ma ;
Qinghua Li ;
Lin Ma ;
Wei Hu ;
Bo Xu .
Transactions of the Indian Institute of Metals, 2019, 72 :1721-1731
[45]   Process Parameters Optimization of Friction Stir Welding of 6005A-T6 Aluminum Alloy Using Taguchi Technique [J].
Ma, Zhongwei ;
Li, Qinghua ;
Ma, Lin ;
Hu, Wei ;
Xu, Bo .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2019, 72 (07) :1721-1731
[46]   Optimization of Friction Stir Welding Parameters to Improve Corrosion Resistance and Hardness of AA2219 Aluminum Alloy Welds [J].
Naik, Balaji D. ;
Rao, Venkata C. H. ;
Rao, Srinivasa K. ;
Reddy, Madhusudan G. ;
Rambabu, G. .
MATERIALS TODAY-PROCEEDINGS, 2019, 15 :76-83
[47]   Multi-objective optimization of friction stir welding process parameters for joining of dissimilar AA5083/AA6063 aluminum alloys using hybrid approach [J].
Gupta, Saurabh Kumar ;
Pandey, K. N. ;
Kumar, Rajneesh .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2018, 232 (04) :343-353
[48]   Taguchi approach for the optimization of refill friction stir spot welding parameters for AA2198-T8 aluminum alloy [J].
Camila Caroline de Castro ;
Athos Henrique Plaine ;
Nelson Guedes de Alcântara ;
Jorge Fernandez dos Santos .
The International Journal of Advanced Manufacturing Technology, 2018, 99 :1927-1936
[49]   Modeling and optimization of aluminum-steel refill friction stir spot welding based on backpropagation neural network [J].
Wang, Shi-yi ;
Zhao, Yun-qiang ;
Volodymyr, Korzhyk ;
Yang, Hao-kun ;
Li, Li-kun ;
Zhang, Bei-xian .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2025, 32 (07) :2104-2115
[50]   Effect of Welding Parameters and Artificial Aging on Mechanical Properties of Friction Stir Welded AA 7004 Alloys: Experimental and Artificial Neural Network Simulation [J].
A. Verma ;
B. Kotteswaran ;
T. Shanmugasundaram .
Metallography, Microstructure, and Analysis, 2021, 10 :515-524