General Bayesian updating and the loss-likelihood bootstrap

被引:64
作者
Lyddon, S. P. [1 ]
Holmes, C. C. [1 ]
Walker, S. G. [2 ]
机构
[1] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, England
[2] Univ Texas Austin, Dept Math, 2515 Speedway, Austin, TX 78712 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Bayesian bootstrap; Fisher information; General Bayesian updating; Loss function; Loss-likelihood bootstrap; Model misspecification; Weighted likelihood bootstrap; INFORMATION; CLASSIFICATION; INFERENCE; MODELS; ROBUST; RISK;
D O I
10.1093/biomet/asz006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we revisit the weighted likelihood bootstrap, a method that generates samples from an approximate Bayesian posterior of a parametric model. We show that the same method can be derived, without approximation, under a Bayesian nonparametric model with the parameter of interest defined through minimizing an expected negative loglikelihood under an unknown sampling distribution. This interpretation enables us to extend the weighted likelihood bootstrap to posterior sampling for parameters minimizing an expected loss. We call this method the loss-likelihood bootstrap, and we make a connection between it and general Bayesian updating, which is a way of updating prior belief distributions that does not need the construction of a global probability model, yet requires the calibration of two forms of loss function. The loss-likelihood bootstrap is used to calibrate the general Bayesian posterior by matching asymptotic Fisher information. We demonstrate the proposed method on a number of examples.
引用
收藏
页码:465 / 478
页数:14
相关论文
共 27 条
[1]   Convexity, classification, and risk bounds [J].
Bartlett, PL ;
Jordan, MI ;
McAuliffe, JD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :138-156
[2]   LIMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN MODEL IS INCORRECT [J].
BERK, RH .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (01) :51-&
[3]   A general framework for updating belief distributions [J].
Bissiri, P. G. ;
Holmes, C. C. ;
Walker, S. G. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (05) :1103-1130
[4]   Stan: A Probabilistic Programming Language [J].
Carpenter, Bob ;
Gelman, Andrew ;
Hoffman, Matthew D. ;
Lee, Daniel ;
Goodrich, Ben ;
Betancourt, Michael ;
Brubaker, Marcus A. ;
Guo, Jiqiang ;
Li, Peter ;
Riddell, Allen .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01) :1-29
[5]   Nonparametric applications of Bayesian inference [J].
Chamberlain, G ;
Imbens, GW .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2003, 21 (01) :12-18
[6]   An MCMC approach to classical estimation [J].
Chernozhukov, V ;
Hong, H .
JOURNAL OF ECONOMETRICS, 2003, 115 (02) :293-346
[7]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[8]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[9]   NEW PARAMETRIC MEASURES OF INFORMATION [J].
FERENTINOS, K ;
PAPAIOANNOU, T .
INFORMATION AND CONTROL, 1981, 51 (03) :193-208
[10]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230