Parafermionic conformal field theory on the lattice

被引:50
|
作者
Mong, Roger S. K. [1 ,2 ]
Clarke, David J. [1 ,2 ]
Alicea, Jason [1 ,2 ]
Lindner, Netanel H. [1 ,2 ,3 ]
Fendley, Paul [4 ]
机构
[1] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[4] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
parafermions; conformal field theory; Potts model; MATRIX RENORMALIZATION-GROUP; 2-DIMENSIONAL ISING-MODEL; QUANTUM HALL STATES; CHIRAL POTTS-MODEL; CRITICAL EXPONENTS; OPERATOR ALGEBRA; ORBIFOLDS; FERMIONS; SYMMETRY; SYSTEMS;
D O I
10.1088/1751-8113/47/45/452001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finding the precise correspondence between lattice operators and the continuum fields that describe their long-distance properties is a largely open problem for strongly interacting critical points. Here, we solve this problem essentially completely in the case of the three-state Potts model, which exhibits a phase transition described by a strongly interacting 'parafermion' conformal field theory. Using symmetry arguments, insights from integrability, and extensive simulations, we construct lattice analogues of nearly all the relevant and marginal physical fields governing this transition. This construction includes chiral fields such as the parafermion. Along the way we also clarify the structure of operator product expansions between order and disorder fields, which we confirm numerically. Our results both suggest a systematic methodology for attacking non-free field theories on the lattice and find broader applications in the pursuit of exotic topologically ordered phases of matter.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Conformal Field Theory from Lattice Fermions
    Osborne, Tobias J.
    Stottmeister, Alexander
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 398 (01) : 219 - 289
  • [2] Logarithmic conformal field theory: a lattice approach
    Gainutdinov, A. M.
    Jacobsen, J. L.
    Read, N.
    Saleur, H.
    Vasseur, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (49)
  • [3] Lattice regularisation of a non-compact boundary conformal field theory
    Robertson, Niall F.
    Jacobsen, Jesper Lykke
    Saleur, Hubert
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [4] Critical Lattice Model for a Haagerup Conformal Field Theory
    Vanhove, Robijn
    Lootens, Laurens
    Van Damme, Maarten
    Wolf, Ramona
    Osborne, Tobias J.
    Haegeman, Jutho
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2022, 128 (23)
  • [5] The ε-expansion from conformal field theory
    Rychkov, Slava
    Tan, Zhong Ming
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (29)
  • [6] Conformal Field Theory at the Lattice Level: Discrete Complex Analysis and Virasoro Structure
    Hongler, Clement
    Kytola, Kalle
    Viklund, Fredrik
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 395 (01) : 1 - 58
  • [7] Lattice regularisation of a non-compact boundary conformal field theory
    Niall F. Robertson
    Jesper Lykke Jacobsen
    Hubert Saleur
    Journal of High Energy Physics, 2021
  • [8] Discreteness and integrality in Conformal Field Theory
    Kaidi, Justin
    Perlmutter, Eric
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [9] On the Real Part of a Conformal Field Theory
    Gepner, Doron
    Partouche, Herve
    UNIVERSE, 2018, 4 (09):
  • [10] Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory
    Bershtein, M. A.
    Fateev, V. A.
    Litvinov, A. V.
    NUCLEAR PHYSICS B, 2011, 847 (02) : 413 - 459