The images of Lie polynomials evaluated on matrices

被引:19
作者
Kanel-Belov, Alexei [1 ]
Malev, Sergey [2 ]
Rowen, Louis [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52100 Ramat Gan, Israel
[2] Hebrew Univ Jerusalem, Einstein Inst Math, Jerusalem, Israel
基金
以色列科学基金会;
关键词
Lie polynomials; matrices; INVARIANT-THEORY; WORD MAPS;
D O I
10.1080/00927872.2017.1282959
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kaplansky asked about the possible images of a polynomial f in several noncommuting variables. In this paper, we consider the case of f a Lie polynomial. We describe all the possible images of f in M-2(K) and provide an example of f whose image is the set of non-nilpotent trace zero matrices, together with 0. We provide an arithmetic criterion for this case. We also show that the standard polynomial s(k) is not a Lie polynomial, for k>2.
引用
收藏
页码:4801 / 4808
页数:8
相关论文
共 29 条
[1]  
Bakhturin Y. A., 1987, IDENTICAL RELATIONS
[2]  
Bandman T, 2016, EUR J MATH, V2, P614, DOI 10.1007/s40879-016-0101-9
[3]   Equations in simple Lie algebras [J].
Bandman, Tatiana ;
Gordeev, Nikolai ;
Kunyavskii, Boris ;
Plotkin, Eugene .
JOURNAL OF ALGEBRA, 2012, 355 (01) :67-79
[4]  
Belov A., 2015, COMPUTATIONAL ASPECT
[5]   Word equations in simple groups and polynomial equations in simple algebras [J].
Kanel-Belov A. ;
Kunyavskii B. ;
Plotkin E. .
Vestnik St. Petersburg University: Mathematics, 2013, 46 (1) :3-13
[6]  
Borel A., 1983, Enseign. Math., V29, P151
[7]   Quasi-identities on matrices and the Cayley-Hamilton polynomial [J].
Bresar, Matej ;
Procesi, Claudio ;
Spenko, Spela .
ADVANCES IN MATHEMATICS, 2015, 280 :439-471
[8]   ON RANGES OF POLYNOMIALS IN FINITE MATRIX-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (02) :293-302
[9]   The adjoint representation inside the exterior algebra of a simple Lie algebra [J].
De Concini, Corrado ;
Papi, Paolo ;
Procesi, Claudio .
ADVANCES IN MATHEMATICS, 2015, 280 :21-46
[10]   A NEW CENTRAL POLYNOMIAL FOR 3X3 MATRICES [J].
DRENSKY, V ;
KASPARIAN, A .
COMMUNICATIONS IN ALGEBRA, 1985, 13 (03) :745-752