Dielectric Properties and Conductivity of (K,NH4)3H(SO4)2 Single Crystals at Low Potassium Concentrations

被引:7
作者
Malyshkina, I. A. [1 ]
Selezneva, E. V. [2 ]
Makarova, I. P. [2 ]
Gavrilova, N. D. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia
[2] Russian Acad Sci, Crystallog & Photon Fed Sci Res Ctr, Shubnikov Inst Crystallog, Moscow 119333, Russia
基金
俄罗斯基础研究基金会;
关键词
superprotonic single crystals; dielectric spectroscopy; PHASE-TRANSITIONS; PROTON CONDUCTIVITY; (NH4)(3)H(SO4)(2); POLARIZATION; RELAXATION; CONDUCTORS; OXIDE;
D O I
10.3103/S002713491904012X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dielectric spectroscopy method was used to study the dielectric properties and conductivity of superprotonic single crystals (K-x(NH4)(1-x))(3)H(SO4)(2) (x = 0.19, 0.27, 0.43)in the 0.1 Hz-10 MHz frequency range and the 223-353 K temperature interval. An analysis of experimental data was carried out using the formalisms of AC conductivity and the electric modulus. The room temperature value of DC conductivity of the studied crystals obtained from solid solutions was approximately similar to 10(-5) (omega center dot cm)(-1), which corresponds to the conductivity values of the initial compounds at high temperatures. The comparable values of the activation energy of both DC conductivity and modulus spectrum suggest that protons are involved not only in the conductivity, but also in the process of electric relaxation. Modulus analysis indicated the temperature independent distribution of relaxation times and the non-Debye behavior in these materials. The temperature dependence of DC conductivity exhibits three (for x = 0.l9 and 0.27) and two (for x = 0.43) temperature intervals with different activation energies, which indicates the presence of structural transitions that cause a change in the mechanism of proton transport.
引用
收藏
页码:392 / 399
页数:8
相关论文
共 50 条
  • [31] Phase equilibria in the (NH4)2SO4 - Rb2SO4 - H2SO4 - H2O system
    Timakov, I. S.
    Komornikov, V. A.
    Grebenev, V. V.
    CHEMICAL PHYSICS, 2022, 563
  • [32] Impedance spectroscopy study of (NH4)3H (SeO4)2: Evidence of increase in lattice disorder in the low temperature phases
    Lindner, L.
    Zdanowska-Fraczek, M.
    Pawlowski, A.
    Frczek, Z. J.
    SOLID STATE IONICS, 2017, 311 : 26 - 30
  • [33] Ferroelastic property and nuclear magnetic resonance in a K3H(SO4)2 single crystal
    Lim, AR
    Jang, TG
    Chang, JH
    Jeong, SY
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (10) : 2863 - 2867
  • [34] Mechanism of quantum effects in hydrogen-bonded crystals of the K3H(SO4)2 group
    Merunka, Dalibor
    Rakvin, Boris
    PHYSICAL REVIEW B, 2009, 79 (13)
  • [35] Implementation of Phase Transitions in Rb3H(SO4)2 under K Substitution
    Timakov, Ivan S.
    Komornikov, Vladimir A.
    Selezneva, Elena V.
    Grebenev, Vadim V.
    CRYSTALS, 2023, 13 (09)
  • [36] Dynamical properties of the partially disordered crystals of Cs5H3(SO4)4•xH2O
    Fedoseev, A
    Lushnikov, SG
    Gvasaliya, SN
    Ko, JH
    Kojima, S
    Shuvalov, LA
    FERROELECTRICS, 2003, 285 : 493 - 506
  • [37] Superproton phase transition in a K3H(SO4)2 crystal
    E. D. Yakushkin
    Bulletin of the Russian Academy of Sciences: Physics, 2010, 74 (9) : 1249 - 1251
  • [38] Study of Phase Transformations in (Cs,NH4)4(HSO4)3(H2PO4) Crystals
    Selezneva, E. V.
    Timakov, I. S.
    Komornikov, V. A.
    Grebenev, V. V.
    Zajnullin, O. B.
    Makarova, I. P.
    PHYSICS OF THE SOLID STATE, 2019, 61 (12) : 2412 - 2414
  • [39] Study of Phase Transformations in (Cs,NH4)4(HSO4)3(H2PO4) Crystals
    E. V. Selezneva
    I. S. Timakov
    V. A. Komornikov
    V. V. Grebenev
    O. B. Zajnullin
    I. P. Makarova
    Physics of the Solid State, 2019, 61 : 2412 - 2414
  • [40] Synthesis, characterization, thermal analysis and electrical properties of (NH4)2M(SO4)2•6H2O (M = Cu, Co, Ni)
    Bejaoui, Abir
    Souamti, Ahmed
    Kahlaoui, Massoud
    Diego Lozano-Gorrin, Antonio
    Morales Palomino, Julian
    Chehimi, Dalila Ben Hassen
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2019, 240 : 97 - 105