Gene Clustering Using Particle Swarm Optimizer Based Memetic Algorithm

被引:0
作者
Ji, Zhen [1 ]
Liu, Wenmin [1 ]
Zhu, Zexuan [1 ]
机构
[1] Shenzhen Univ, Shenzhen City Key Lab Embedded Syst Design, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
来源
ADVANCES IN SWARM INTELLIGENCE, PT I | 2011年 / 6728卷
关键词
EXPRESSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
K-means is one of the most commonly used clustering methods for analyzing gene expression data, where it is sensitive to the choice of initial clustering centroids and tends to be trapped in local optima. To overcome these problems, a memetic K-means (MKMA) algorithm, which is a hybridization of particle swarm optimizer (PSO) based memetic algorithm (MA) and K-means, is proposed in this paper. In particular, the PSO based MA is used to minimize the within-cluster sum of squares and the K-means is used to iteratively fine-tune the locations of the centers. The experimental results on two gene expression datasets indicate that MKMA is capable of obtaining more compact clusters than K-means, Fuzzy K-means, and the other PSO based K-means namely PK-means. MKMA is also demonstrated to attain faster convergence rate and more robustness against the random choice of initial centroids.
引用
收藏
页码:587 / 594
页数:8
相关论文
共 15 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[3]   PK-means: A new algorithm for gene clustering [J].
Du, Zhihua ;
Wang, Yiwei ;
Ji, Zhen .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2008, 32 (04) :243-247
[4]   GROWING CELL STRUCTURES - A SELF-ORGANIZING NETWORK FOR UNSUPERVISED AND SUPERVISED LEARNING [J].
FRITZKE, B .
NEURAL NETWORKS, 1994, 7 (09) :1441-1460
[5]  
Gasch AP, 2002, GENOME BIOL, V3
[6]  
JI Z, 2007, ACTA ELECT SIN, V35, P86
[7]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[8]   Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J].
Liang, J. J. ;
Qin, A. K. ;
Suganthan, Ponnuthurai Nagaratnam ;
Baskar, S. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) :281-295
[9]  
Macqueen J., 1967, P 5 BERK S MATH STAT, P271
[10]   A STUDY OF THE COMPARABILITY OF EXTERNAL CRITERIA FOR HIERARCHICAL CLUSTER-ANALYSIS [J].
MILLIGAN, GW ;
COOPER, MC .
MULTIVARIATE BEHAVIORAL RESEARCH, 1986, 21 (04) :441-458