An n-dimensional Ambarzumian type theorem for Dirac operators

被引:17
|
作者
Kiss, M [1 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Math Anal, H-1111 Budapest, Hungary
关键词
D O I
10.1088/0266-5611/20/5/016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the one-dimensional Dirac operator with continuous self-adjoint n x n matrix potential. In some special cases the potential can be reconstructed from one spectrum. The proof is based on the properties of a special variable (see lemma 2.3).
引用
收藏
页码:1593 / 1597
页数:5
相关论文
共 50 条
  • [21] AN N-DIMENSIONAL CASORATI-WEIERSTRASS THEOREM
    WU, HH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 131 - &
  • [22] An n-dimensional version of Steinhaus' chessboard theorem
    Tkacz, Przemyslaw
    Turzanski, Marian
    TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (04) : 354 - 361
  • [23] AN N-DIMENSIONAL BORG-LEVINSON THEOREM
    NACHMAN, A
    SYLVESTER, J
    UHLMANN, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (04) : 595 - 605
  • [24] Spectral Determinants and an Ambarzumian Type Theorem on Graphs
    Kiss, Marton
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (03)
  • [25] Tietze Extension Theorem for n-dimensional Spaces
    Pak, Karol
    FORMALIZED MATHEMATICS, 2014, 22 (01): : 11 - 19
  • [26] ADDITIVITY THEOREM FOR N-DIMENSIONAL ASYMPTOTIC DENSITY
    FREEDMAN, AR
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 49 (02) : 357 - 363
  • [27] THE FROBENIUS THEOREM ON N-DIMENSIONAL QUANTUM HYPERPLANE
    Ciupala, C.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2006, 75 (01): : 21 - 30
  • [28] Commutators of n-dimensional rough Hardy operators
    ZunWei Fu
    ShanZhen Lu
    FaYou Zhao
    Science China Mathematics, 2011, 54 : 95 - 104
  • [29] Commutators of n-dimensional rough Hardy operators
    FU ZunWei1
    2Department of Mathematics
    ScienceChina(Mathematics), 2011, 54 (01) : 95 - 104
  • [30] Commutators of n-dimensional rough Hardy operators
    Fu ZunWei
    Lu ShanZhen
    Zhao FaYou
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (01) : 95 - 104