Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies

被引:193
作者
Al-Ketan, Oraib [1 ]
Rezgui, Rachid [2 ]
Rowshan, Reza [2 ]
Du, Huifeng [3 ]
Fang, Nicholas X. [3 ]
Abu Al-Rub, Rashid K. [1 ]
机构
[1] Khalifa Univ, Masdar Inst Sci & Technol, Dept Mech & Mat Engn, Abu Dhabi 54224, U Arab Emirates
[2] New York Univ Abu Dhabi, Div Core Technol Platforms, Abu Dhabi 129188, U Arab Emirates
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
3D printing technology; architected materials; cellular materials; metamaterials; minimal surfaces; METALLIC FOAMS; WING SCALES; 3D; STRENGTH; DESIGN; FABRICATION; COMPOSITES; PRINCIPLES; ULTRALIGHT; NANOSCALE;
D O I
10.1002/adem.201800029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Historically, the creation of lightweight, yet mechanically robust, materials have been the most sought-after engineering pursuit. For that purpose, research efforts are dedicated to finding pathways to emulate and mimic the resilience offered by natural biological systems (i.e., bone and wood). These natural systems evolved over time to provide the most attainable structural efficiency through their architectural characteristics that can span over multiple length scales. Nature-inspired man-made cellular metamaterials have effective properties that depend largely on their topology rather than composition and are hence remarkable candidates for a wide range of application. Despite their geometrical complexity, the fabrication of such metamaterials is made possible by the emergence of advanced fabrication techniques that permit the fabrication of complex architectures down to the nanometer scale. In this work, we report the fabrication and mechanical testing of nature-inspired, mathematically created, micro-architected, cellular metamaterials with topologies based on triply periodic minimal surfaces (TPMS) with cubic symmetries fabricated through direct laser writing two-photon lithography. These TPMS-based microlattices are sheet/shell- and strut-based metamaterials with high geometrical complexity. Interestingly, results show that TPMS sheet-based microlattices follow a stretching-dominated mode of deformation, and further illustrate their mechanical superiority over the traditional and well-known strut-based microlattices and microlattice composites. The TPMS sheet-based polymeric microlattices exhibited mechanical properties superior to other micrloattices comprising metal- and ceramic-coated polymeric substrates and, interestingly, are less affected by the change in density, which opens the door for fabricating ultralightweight materials without much sacrificing mechanical properties.
引用
收藏
页数:15
相关论文
共 78 条
[1]   Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures [J].
Abueidda, Diab W. ;
Bakir, Mete ;
Abu Al-Rub, Rashid K. ;
Bergstrom, Jorgen S. ;
Sobh, Nahil A. ;
Jasiuk, Iwona .
MATERIALS & DESIGN, 2017, 122 :255-267
[2]   Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces [J].
Abueidda, Diab W. ;
Abu Al-Rub, Rashid K. ;
Dalaq, Ahmed S. ;
Lee, Dong-Wook ;
Khan, Kamran A. ;
Jasiuk, Iwona .
MECHANICS OF MATERIALS, 2016, 95 :102-115
[3]   Skeleton of Euplectella sp.:: Structural hierarchy from the nanoscale to the macroscale [J].
Aizenberg, J ;
Weaver, JC ;
Thanawala, MS ;
Sundar, VC ;
Morse, DE ;
Fratzl, P .
SCIENCE, 2005, 309 (5732) :275-278
[4]  
Al-Ketan O., 2018, J MATER RES, V33, P1
[5]   Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J].
Al-Ketan, Oraib ;
Rowshan, Reza ;
Abu Al-Rub, Rashid K. .
ADDITIVE MANUFACTURING, 2018, 19 :167-183
[6]   Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures [J].
Al-Ketan, Oraib ;
Soliman, Ahmad ;
AlQubaisi, Ayesha M. ;
Abu Al-Rub, Rashid K. .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (02)
[7]   Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures [J].
Al-Ketan, Oraib ;
Assad, Mhd Adel ;
Abu Al-Ru, Rashid K. .
COMPOSITE STRUCTURES, 2017, 176 :9-19
[8]   Mechanical Properties of a New Type of Architected Interpenetrating Phase Composite Materials [J].
Al-Ketan, Oraib ;
Abu Al-Rub, Rashid K. ;
Rowshan, Reza .
ADVANCED MATERIALS TECHNOLOGIES, 2017, 2 (02)
[9]   Direct laser writing [J].
Anscombe, Nadya .
NATURE PHOTONICS, 2010, 4 (01) :22-23
[10]   The properties of foams and lattices [J].
Ashby, MF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1838) :15-30