Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries

被引:62
作者
Chen, Suli [1 ]
Feng, Fan [1 ]
Yin, Yimei [1 ]
Lizo, Xiaozhen [1 ]
Ma, Zifeng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Chem Engn, Shanghai Electrochem Energy Devices Res Ctr, Shanghai 200240, Peoples R China
关键词
Plastic crystal polymer electrolyte; Boron based anion acceptor; All-solid-state; Favorable interfacial contact; Room-temperature sodium-ion battery; COMPOSITE ELECTROLYTES; CATHODE MATERIALS; LITHIUM; CONDUCTIVITY; SUCCINONITRILE; TRANSPORT; MEMBRANE; PHASE;
D O I
10.1016/j.ensm.2018.12.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is always a compelling challenge to develop solid electrolyte for ambient-temperature all-solid-state rechargeable batteries, which occupies superior ionic conductivity, high ion transference number, considerable mechanical property, and favorable interfacial contact. Here, a nonwoven supported plastic crystal polymer electrolyte containing anion-trapping boron moieties (B-PCPE) for all-solid-state sodium-ion batteries (SIBs) is first reported to improve overall performances. The B-BCPE was prepared by in situ growth of plastic crystal electrolyte and boron-containing cross-linker inside a nonwoven support via UV-curing technique. With an anion acceptor contained three-dimensional network structure, the B-PCPE simultaneously exhibited a remarkable room temperature ionic conductivity (0.36 mS cm(-1)), high sodium-ion transference number (similar to 0.62), and a superior tensile strength (28.2 MPa). Remarkably, plastic crystal polymer electrolyte impregnated composite NaNi1/3Fe1/3Mn1/3O2 (c-NFM) cathode and hard carbon (c-HC) anode were designed by in situ growth technique. By this technique, ion transport in electrodes as well as that between electrode-electrolyte interfaces could be strengthened. Therefore, the cycle and rate performance of all-solid-state SIB assembled by this technique are greatly enhanced. The all-solid-state SIB assembled by this technique delivers a high first discharge capacity of 104.8 mA h g(-1) with capacity retention of about 80.1% after 120 cycles at 0.1 C. It's believed that B-PCPE is a promising candidate for practical application and provides a new perspective to design high-performance solid electrolyte for ambient-temperature all-solid-state batteries with exceptional rate capability and cycle stability.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 60 条
[11]   ELECTROCHEMICAL MEASUREMENT OF TRANSFERENCE NUMBERS IN POLYMER ELECTROLYTES [J].
EVANS, J ;
VINCENT, CA ;
BRUCE, PG .
POLYMER, 1987, 28 (13) :2324-2328
[12]   Routes to High Energy Cathodes of Sodium-Ion Batteries [J].
Fang, Chun ;
Huang, Yunhui ;
Zhang, Wuxing ;
Han, Jiantao ;
Deng, Zhe ;
Cao, Yuliang ;
Yang, Hanxi .
ADVANCED ENERGY MATERIALS, 2016, 6 (05)
[13]   Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions [J].
Feng, Shaowei ;
Shi, Dongyang ;
Liu, Fang ;
Zheng, Liping ;
Nie, Jin ;
Feng, Wengfang ;
Huang, Xuejie ;
Armand, Michel ;
Zhou, Zhibin .
ELECTROCHIMICA ACTA, 2013, 93 :254-263
[14]   Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vapor-Redistribution for High-Energy Sodium-Ion Batteries [J].
Gao, Hong ;
Zhou, Tengfei ;
Zheng, Yang ;
Liu, Yuqing ;
Chen, Jun ;
Liu, Huakun ;
Guo, Zaiping .
ADVANCED ENERGY MATERIALS, 2016, 6 (21)
[15]   A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries [J].
Gao, Hongcai ;
Xue, Leigang ;
Xin, Sen ;
Park, Kyusung ;
Goodenough, John B. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (20) :5541-5545
[16]   A Design and Implementation of SDN Multicast for Distributed Shared Memory [J].
Gao, Qiang ;
Tong, Weiqin ;
Kausar, Samina ;
Zheng, Shengan .
2015 9TH INTERNATIONAL CONFERENCE ON FUTURE GENERATION COMMUNICATION AND NETWORKING (FGCN), 2015, :5-8
[17]   Electrochemical energy storage in a sustainable modern society [J].
Goodenough, John B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :14-18
[18]   Rechargeable batteries: challenges old and new [J].
Goodenough, John B. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (06) :2019-2029
[19]   UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries [J].
Ha, Hyo-Jeong ;
Kil, Eun-Hye ;
Kwon, Yo Han ;
Kim, Je Young ;
Lee, Chang Kee ;
Lee, Sang-Young .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (04) :6491-6499
[20]   Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors [J].
Han, Jae Hee ;
Lee, Jang Yong ;
Suh, Dong Hack ;
Hong, Young Taik ;
Kim, Tae-Ho .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (39) :33913-33924