Uniaxial rebound at the nematic biaxial transition

被引:28
作者
Bisi, Fulvio
Romano, Silvano
Virga, Epifanio G.
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[2] Univ Pavia, CNISM, I-27100 Pavia, Italy
[3] Univ Pavia, Dipartimento Fis A Volta, I-27100 Pavia, Italy
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 04期
关键词
D O I
10.1103/PhysRevE.75.041705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Over the last few years, renewed interest has been raised by the simplified general interaction models proposed by Straley for mesogenic molecules possessing the D-2h symmetry and capable of producing biaxial nematic order. It has already been shown that, in the presence of certain special symmetries, just two out of the four order parameters that are in general necessary, suffice for the description of a biaxial phase. For some other range of parameters, these reducing symmetries do not hold, and, moreover, a mean-field treatment has to be suitably changed into a minimax strategy, still producing a transition to a low-temperature biaxial phase. Upon studying the general parameter range, we identify as a common feature the behavior of a uniaxial order parameter, attaining a local minimum at the biaxial-to-uniaxial transition temperature, and recognizably increasing away from it. This finding is confirmed by a Monte Carlo simulation.
引用
收藏
页数:11
相关论文
共 51 条
[1]   Biaxial nematic phase in bent-core thermotropic mesogens [J].
Acharya, BR ;
Primak, A ;
Kumar, S .
PHYSICAL REVIEW LETTERS, 2004, 92 (14) :145506-1
[2]   CHARACTERIZATION OF ORDER IN NEMATIC LIQUID-CRYSTALS [J].
ALBEN, R ;
SHIH, CS ;
MCCOLL, JR .
SOLID STATE COMMUNICATIONS, 1972, 11 (08) :1081-&
[3]   COMPUTER-SIMULATION OF A BIAXIAL LIQUID-CRYSTAL [J].
ALLEN, MP .
LIQUID CRYSTALS, 1990, 8 (04) :499-511
[4]   UNIAXIAL NEMATIC PHASE IN FLUIDS OF BIAXIAL PARTICLES [J].
BERGERSEN, B ;
PALFFYMUHORAY, P ;
DUNMUR, DA .
LIQUID CRYSTALS, 1988, 3 (03) :347-352
[5]   PHASE-DIAGRAM AND ORIENTATIONAL ORDER IN A BIAXIAL LATTICE MODEL - A MONTE-CARLO STUDY [J].
BISCARINI, F ;
CHICCOLI, C ;
PASINI, P ;
SEMERIA, F ;
ZANNONI, C .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1803-1806
[6]   Universal mean-field phase diagram for biaxial nematics obtained from a minimax principle [J].
Bisi, Fulvio ;
Virga, Epifanio G. ;
Gartland, Eugene C., Jr. ;
De Matteis, Giovanni ;
Sonnet, Andre M. ;
Durand, Georges E. .
PHYSICAL REVIEW E, 2006, 73 (05)
[7]   SOLVABLE MODEL EXHIBITING A 1ST-ORDER PHASE-TRANSITION [J].
BOCCARA, N ;
MEJDANI, R ;
DESEZE, L .
JOURNAL DE PHYSIQUE, 1977, 38 (02) :149-151
[8]  
BOGOLUBOV NN, 1972, METHOD STUDYING MODE
[9]   Phase diagram of the hard biaxial ellipsoid fluid [J].
Camp, PJ ;
Allen, MP .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (16) :6681-6688
[10]   Theory and computer simulation of bent-core molecules [J].
Camp, PJ ;
Allen, MP ;
Masters, AJ .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (21) :9871-9881