Numerical prediction of steady-state detonation properties of condensed-phase explosives

被引:10
作者
Cengiz, F. [2 ]
Ulas, A. [1 ]
机构
[1] Middle E Tech Univ, Dept Mech Engn, TR-06531 Ankara, Turkey
[2] Turkish Sci & Technol Council, Ankara, Turkey
关键词
Detonation; Chapman-Jouguet theory; BKW equation of state; Cowan-Fickett equation of state; High explosives; Chemical equilibrium; PERFORMANCE;
D O I
10.1016/j.jhazmat.2009.08.038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Within the scope of this study, a computer code named BARUT-X has been developed to calculate the detonation properties of C-H-N-O based condensed-phase explosives using the Chapman-Jouguet (C-J) theory. Determination of the detonation properties is performed in chemical equilibrium and steady-state conditions. Unlike other codes in the literature which use steepest descent optimization method, BARUT-X uses a nonlinear optimization code based on Generalized Reduced Gradient algorithm to compute the equilibrium composition of the detonation products. This optimization code provides a higher level of robustness of the solutions and global optimum determination efficiency. The Becker-Kistiakowsky-Wilson's (BKW) equation of state (EOS) is applied to the high-density gaseous detonation products at high pressures. BARUT-X uses RDX, TNT, BKWR, and BKWN set of constants in the BKW EOS. In addition, the Cowan-Fickett's EOS is applied for the compressible solid carbon in the detonation products. The calculated detonation properties for several condensed-phase explosives by BARUT-X have been compared with those computed by EXPLO5 and FORTRAN BKW codes as well as the experimental data in terms of detonation velocity and detonation pressure. Satisfactory agreement is obtained from these comparisons. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1646 / 1651
页数:6
相关论文
共 25 条
[1]  
Abadie J., 1969, Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints
[2]  
[Anonymous], LA2712 LOS AL SCI LA
[3]  
[Anonymous], 2002, NASATP2001210959REV1
[4]  
Bazaraa M.S., 1990, LINEAR PROGRAMMING N, DOI DOI 10.1002/0471787779
[5]  
Borg R., 1995, DSTOTR0226
[6]   CALCULATION OF THE DETONATION PROPERTIES OF SOLID EXPLOSIVES WITH THE KISTIAKOWSKY-WILSON EQUATION OF STATE [J].
COWAN, RD ;
FICKETT, W .
JOURNAL OF CHEMICAL PHYSICS, 1956, 24 (05) :932-939
[7]  
Finger M., 1976, Proceedings of the 6th International Detonation Symposium, page, P710
[8]  
FRIED LE, 2007, CHEETAH 5 0 COMPUTER
[9]  
Hobbs M. L., 1993, P 10 S INT DET BOST, P409
[10]   Simple determination of performance of explosives without using any experimental data [J].
Keshavarz, MH .
JOURNAL OF HAZARDOUS MATERIALS, 2005, 119 (1-3) :25-29