A Simflowny-based finite-difference code for high-performance computing in numerical relativity

被引:36
作者
Palenzuela, Carlos [1 ,2 ,3 ]
Minano, Borja [3 ]
Vigano, Daniele [1 ,2 ,3 ]
Arbona, Antoni [3 ]
Bona-Casas, Carles [1 ,2 ,3 ]
Rigo, Andreu [3 ]
Bezares, Miguel [1 ,2 ,3 ]
Bona, Carles [1 ,2 ,3 ]
Masso, Joan [1 ,2 ,3 ]
机构
[1] Univ Illes Balears, Dept Fis, E-07122 Palma de Mallorca, Baleares, Spain
[2] Inst Estudis Espacials Catalunya, E-07122 Palma de Mallorca, Baleares, Spain
[3] Univ Illes Balears, Inst Aplicac Computat IAC3, E-07122 Palma de Mallorca, Baleares, Spain
关键词
high performance computing; numerical relativity; exascale; GRAVITATIONAL-WAVES; SCHEME; MAGNETOHYDRODYNAMICS;
D O I
10.1088/1361-6382/aad7f6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The tremendous challenge of comparing our theoretical models with the gravitational-wave observations in the new era of multimessenger astronomy requires accurate and fast numerical simulations of complicated physical systems described by the Einstein and the matter equations. These requirements can only be satisfied if the simulations can be parallelized efficiently on a large number of processors and advanced computational strategies are adopted. To achieve this goal we have developed Simflowny, an open platform for scientific dynamical models which automatically generates parallel code for different simulation frameworks, allowing the use of HPC infrastructures to nonspecialist scientists. One of these frameworks is SAMRAI, a mature patch-based structured adaptive mesh refinement infrastructure, capable of reaching exascale in some specific problems. Here we present the numerical techniques that we have implemented on this framework by using Simflowny in order to perform fast, efficient, accurate and highly-scalable simulations. These techniques involve high-order schemes for smooth and non-smooth solutions, Adaptive Mesh Refinement with arbitrary resolution ratios and an optimal strategy for the sub-cycling in time. We validate the automatically generated codes for the SAMRAI infrastructure with some simple test examples (i.e. wave equation and Newtonian MHD) and finally with the Einstein equations.
引用
收藏
页数:42
相关论文
共 53 条
[11]  
[Anonymous], ARXIV13081343
[12]  
[Anonymous], 2012, AUTOMATED SOLUTION D, DOI 10.1007/978-3-642-23099-8
[13]  
[Anonymous], 2008, Numerical Methods for Ordinary Differential Equations
[14]  
[Anonymous], 2006 COMP AID CONTR
[15]   Simflowny 2: An upgraded platform for scientific modelling and simulation [J].
Arbona, A. ;
Minano, B. ;
Rigo, A. ;
Bona, C. ;
Palenzuela, C. ;
Artigues, A. ;
Bona-Casas, C. ;
Masso, J. .
COMPUTER PHYSICS COMMUNICATIONS, 2018, 229 :170-181
[16]   Simflowny:. A general-purpose platform for the management of physical models and simulation problems [J].
Arbona, A. ;
Artigues, A. ;
Bona-Casas, C. ;
Masso, J. ;
Minano, B. ;
Rigo, A. ;
Trias, M. ;
Bona, C. .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (10) :2321-2331
[17]   Higher-order accurate space-time schemes for computational astrophysics—Part I: finite volume methods [J].
Dinshaw S. Balsara .
Living Reviews in Computational Astrophysics, 2017, 3 (1)
[18]   Final fate of compact boson star mergers [J].
Bezares, Miguel ;
Palenzuela, Carlos ;
Bona, Carles .
PHYSICAL REVIEW D, 2017, 95 (12)
[19]   Extraction of gravitational waves in numerical relativity [J].
Bishop, Nigel T. ;
Rezzolla, Luciano .
LIVING REVIEWS IN RELATIVITY, 2016, 19
[20]   General-covariant evolution formalism for numerical relativity -: art. no. 104005 [J].
Bona, C ;
Ledvinka, T ;
Palenzuela, C ;
Zácek, M .
PHYSICAL REVIEW D, 2003, 67 (10)