Enhancing PCMs thermal conductivity: A comparison among porous metal foams, nanoparticles and finned surfaces in triplex tube heat exchangers

被引:106
作者
NematpourKeshteli, Abolfazl [1 ]
Iasiello, Marcello [1 ]
Langella, Giuseppe [1 ]
Bianco, Nicola [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Ingegneria Ind, Ple Tecchio 80, I-80125 Naples, Italy
关键词
Thermal energy storage; Phase change materials; Nanoparticles; Metal foam; Finned surfaces; Triplex tube heat exchanger; PHASE-CHANGE MATERIAL; ENERGY-STORAGE-SYSTEM; TRANSFER ENHANCEMENT; PERFORMANCE; CONVECTION; PARAFFIN; UNIT; COMPOSITES; MANAGEMENT; NANOFLUID;
D O I
10.1016/j.applthermaleng.2022.118623
中图分类号
O414.1 [热力学];
学科分类号
摘要
Increasing latent heat thermal energy storage system thermal conductivity is of primary importance to take advantage of their capability of storing large amount of thermal energy. For this task, various solutions have been proposed through the years and a throughout comparison depending on the final application is still lacking. In this paper, the melting process of PCMs embedded in a Triplex-Tube Heat Exchanger (TTHX) is investigated numerically by considering three different methods that include separately or together metal foams, nanoparticles addition and finned surfaces. Organic PCMs with different melting points are used as PCMs in the middle shell of the 3D (TTHX) to maximize latent heat depending on local temperatures. Water across inner and outer tubes is considered too as the heat transfer fluid. Results are presented in terms of liquid fraction, temperature evolution as well as charging the energy storage rate. The results show that a composite of PCM/Metal Foam with porosities that vary from 0.98 to 0.92 engenders shorter melting comparing to pure PCM. By inserting metallic foam with different porosities and nanoparticles with 5% volume fraction in the TTHX (Case A), the melting time decrease can achieve a 69.52% when compared with Pure-PCM. Regarding the melting process in pure Multilayer-PCM (Case B), for all metal foam porosities the foam/nano-PCM device shows a shorter melting time even if nanoparticles have minor impact compared to metal foams, reaching a 83.48% in terms of reduction if nanoparticles and metal foams are employed. Finally, for the Case C, melting times are smaller when comparisons are done with Cases A and B for pure PCM. Furthermore, in the finned surfaces of TTHX (Case C), the inclusion of nanoparticles with foam reduced the melting durations by 53.17% compared to the TTHX (Case A) with pure PCM.
引用
收藏
页数:28
相关论文
共 72 条
  • [1] Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins
    Abdulateef, Ammar M.
    Mat, Sohif
    Sopian, Kamaruzzaman
    Abdulateef, Jasim
    Gitan, Ali A.
    [J]. SOLAR ENERGY, 2017, 155 : 142 - 153
  • [2] Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials
    Adine, Hamid Ait
    El Qarnia, Hamid
    [J]. APPLIED MATHEMATICAL MODELLING, 2009, 33 (04) : 2132 - 2144
  • [3] Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers
    Al-Abidi, Abduljalil A.
    Mat, Sohif
    Sopian, K.
    Sulaiman, M. Y.
    Mohammad, Abdulrahman Th.
    [J]. APPLIED THERMAL ENGINEERING, 2013, 53 (01) : 147 - 156
  • [4] Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment
    Alshaer, W. G.
    Nada, S. A.
    Rady, M. A.
    Le Bot, Cedric
    Del Barrio, Elena Palomo
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2015, 89 : 873 - 884
  • [5] [Anonymous], ENG EDG ENG REF DAT
  • [6] Numerical study on melting of paraffin wax with Al2O3 in a square enclosure
    Arasu, A. Valan
    Mujumdar, Arun S.
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (01) : 8 - 16
  • [7] Enhancement of PCM melting rate via internal fin and nanoparticles
    Arici, Muslum
    Tutuncu, Ensar
    Yildiz, Cagatay
    Li, Dong
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 156
  • [8] Effect of porosity of conducting matrix on a phase change energy storage device
    Atal, Aditya
    Wang, Yuping
    Harsha, Mayur
    Sengupta, Subrata
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 93 : 9 - 16
  • [9] On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam
    Boomsma, K
    Poulikakos, D
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (04) : 827 - 836
  • [10] BRENT AD, 1988, NUMER HEAT TRANSFER, V13, P297, DOI 10.1080/10407788808913615