Training Second-Order Hidden Markov Models with Multiple Observation Sequences

被引:2
作者
Du Shiping [1 ]
Chen Tao [1 ]
Zeng Xianyin [1 ]
Wang Jian [1 ]
Wei Yuming [2 ]
机构
[1] Sichuan Agr Univ, Coll Biol & Sci, Yaan 625014, Sichuan, Peoples R China
[2] Sichuan Agr Univ, Triticeae Res Inst, Yaan 625014, Sichuan, Peoples R China
来源
2009 INTERNATIONAL FORUM ON COMPUTER SCIENCE-TECHNOLOGY AND APPLICATIONS, VOL 1, PROCEEDINGS | 2009年
基金
国家高技术研究发展计划(863计划);
关键词
Second-order hidden Markov models; forward-backward procedure; Baum-Welch algorithm; multiple observable sequences; SPEECH RECOGNITION;
D O I
10.1109/IFCSTA.2009.12
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Second-order hidden Markov models (HMM2) have been widely used in pattern recognition, especially in speech recognition. Their main advantages are their capabilities to model noisy temporal signals of variable length. In this article, we introduce a new HMM2 with multiple observable sequences, assuming that all the observable sequences are statistically correlated. In this treatment, the multiple observation probability is expressed as a combination of individual observation probabilities without losing generality. This combinatorial method gives one more freedom in making different dependence-independence assumptions. By generalizing Baum's auxiliary function into this framework and building up an associated objective function using Lagrange multiplier method, several new formulae solving model training problem are theoretically derived, we show that the model training equations can be easily derived with an independence assumption.
引用
收藏
页码:25 / +
页数:2
相关论文
共 19 条
[1]  
ASAI K, 1993, COMPUT APPL BIOSCI, V9, P141
[2]  
AYCARD O, 2004, INT J ADV ROBOT SYST, V1, P233
[3]  
BING F, 5 INT C SIGN PROC P, V3, P1542
[4]   Stylized facts of financial time series and hidden semi-Markov models [J].
Bulla, Jan ;
Bulla, Ingo .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (04) :2192-2209
[5]  
CHEN MY, 1994, IEEE T PATTERN ANAL, V16, P481
[6]   THE CHALLENGE OF SPOKEN LANGUAGE SYSTEMS - RESEARCH DIRECTIONS FOR THE NINETIES [J].
COLE, R ;
HIRSCHMAN, L ;
ATLAS, L ;
BECKMAN, M ;
BIERMANN, A ;
BUSH, M ;
CLEMENTS, M ;
COHEN, J ;
GARCIA, O ;
HANSON, B ;
HERMANSKY, H ;
LEVINSON, S ;
MCKEOWN, K ;
MORGAN, N ;
NOVICK, DG ;
OSTENDORF, M ;
OVIATT, S ;
PRICE, P ;
SILVERMAN, H ;
SPITZ, J ;
WAIBEL, A ;
WEINSTEIN, C ;
ZAHORIAN, S ;
ZUE, V .
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1995, 3 (01) :1-21
[7]   Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models [J].
Do, MN ;
Vetterli, M .
IEEE TRANSACTIONS ON MULTIMEDIA, 2002, 4 (04) :517-527
[8]  
Durbin R., 1998, Analysis, V356, DOI [10.1017/CBO9780511790492, DOI 10.1017/CBO9780511790492]
[9]   Wavelet-based, texture analysis and synthesis using hidden Markov models [J].
Fan, GL ;
Xia, XG .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2003, 50 (01) :106-120
[10]   2-D SHAPE CLASSIFICATION USING HIDDEN MARKOV MODEL [J].
HE, Y ;
KUNDU, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (11) :1172-1184