Randomized Sketching for Large-Scale Sparse Ridge Regression Problems

被引:0
作者
Iyer, Chander [1 ]
Carothers, Christopher [1 ]
Drineas, Petros [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[2] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
来源
PROCEEDINGS OF SCALA 2016: 7TH WORKSHOP ON LATEST ADVANCES IN SCALABLE ALGORITHMS FOR LARGE-SCALE SYSTEMS | 2016年
关键词
Linear algebra; high performance computing; least-squares approximation; sparse matrices; ALGORITHM;
D O I
10.1109/ScalA.2016.13
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a fast randomized ridge regression solver for sparse overdetermined matrices in distributed-memory platforms. Our solver is based on the Blendenpik algorithm, but employs sparse random projection schemes to construct a sketch of the input matrix. These sparse random projection sketching schemes, and in particular the use of the Randomized Sparsity-Preserving Transform, enable our algorithm to scale the distributed memory vanilla implementation of Blendenpik and provide up to x 13 speedup over a state-of-the-art parallel Cholesky-like sparse-direct solver.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 2013, Advances in neural information processing systems (NIPS)
[2]  
[Anonymous], 1998, P 15 INT C MACHINE L
[3]  
[Anonymous], 2002, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
[4]   BLENDENPIK: SUPERCHARGING LAPACK'S LEAST-SQUARES SOLVER [J].
Avron, Haim ;
Maymounkov, Petar ;
Toledo, Sivan .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (03) :1217-1236
[5]  
Bjorck A., 1996, NUMERICAL METHODS LE, DOI DOI 10.1137/1.9781611971484
[6]  
Chen SY, 2015, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P201
[7]  
Clarkson KL, 2013, STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, P81
[8]   OpenMP: An industry standard API for shared-memory programming [J].
Dagum, L ;
Menon, R .
IEEE COMPUTATIONAL SCIENCE & ENGINEERING, 1998, 5 (01) :46-55
[9]   Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR Factorization [J].
Davis, Timothy A. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 38 (01)
[10]   Faster least squares approximation [J].
Drineas, Petros ;
Mahoney, Michael W. ;
Muthukrishnan, S. ;
Sarlos, Tamas .
NUMERISCHE MATHEMATIK, 2011, 117 (02) :219-249