Precision requirements for interferometric gridding in the analysis of a 21 cm power spectrum

被引:24
作者
Offringa, A. R. [1 ,2 ]
Mertens, F. [2 ]
van Der Tol, S. [1 ]
Veenboer, B. [1 ]
Gehlot, B. K. [2 ,3 ]
Koopmans, L. V. E. [2 ]
Mevius, M. [1 ]
机构
[1] Netherlands Inst Radio Astron ASTRON, NL-7991 PD Dwingeloo, Netherlands
[2] Univ Groningen, Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands
[3] Arizona State Univ, Sch Earth & Space Explorat, 781 Terrace Mall, Tempe, AZ 85287 USA
基金
欧盟地平线“2020”;
关键词
dark ages; reionization; first stars; methods; data analysis; observational; techniques; interferometric; instrumentation; interferometers; LOW-FREQUENCY; REIONIZATION; EPOCH; CALIBRATION; DECONVOLUTION; PARAMETER; DESIGN; WINDOW; I;
D O I
10.1051/0004-6361/201935722
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Experiments that try to observe the 21 cm redshifted signals from the epoch of reionisation (EoR) using interferometric low-frequency instruments have stringent requirements on the processing accuracy. Aims. We analyse the accuracy of radio interferometric gridding of visibilities with the aim to quantify the power spectrum bias caused by gridding. We do this ultimately to determine the suitability of different imaging algorithms and gridding settings for an analysis of a 21 cm power spectrum. Methods. We simulated realistic Low-Frequency Array (LOFAR) data and constructed power spectra with convolutional gridding and w stacking, w projection, image-domain gridding, and without w correction. These were compared against data that were directly Fourier transformed. The influence of oversampling, kernel size, w-quantization, kernel windowing function, and image padding were quantified. The gridding excess power was measured with a foreground subtraction strategy, for which foregrounds were subtracted using Gaussian progress regression, as well as with a foreground avoidance strategy. Results. Constructing a power spectrum with a significantly lower bias than the expected EoR signals is possible with the methods we tested, but requires a kernel oversampling factor of at least 4000, and when w-correction is used, at least 500 w-quantization levels. These values are higher than typically used values for imaging, but they are computationally feasible. The kernel size and padding factor parameters are less crucial. Of the tested methods, image-domain gridding shows the highest accuracy with the lowest imaging time. Conclusions. LOFAR 21 cm power spectrum results are not affected by gridding. Image-domain gridding is overall the most suitable algorithm for 21 cm EoR power spectrum experiments, including for future analyses of data from the Square Kilometre Array (SKA) EoR. Nevertheless, convolutional gridding with tuned parameters results in sufficient accuracy for interferometric 21 cm EoR experiments. This also holds for w stacking for wide-field imaging. The w-projection algorithm is less suitable because of the requirements for kernel oversampling, and a faceting approach is unsuitable because it causes spatial discontinuities.
引用
收藏
页数:12
相关论文
共 63 条
[1]  
[Anonymous], 2017, ASTROPHYS J, DOI DOI 10.3847/1538-4357/AA6259
[2]  
[Anonymous], METHODS COMPUTATIONA, DOI [10.1016/B978-0-12-460814-6.50008-5, DOI 10.1016/B978-0-12-460814-6.50008-5]
[3]   Polarization leakage in epoch of reionization windows - I. Low Frequency Array observations of the 3C196 field [J].
Asad, K. M. B. ;
Koopmans, L. V. E. ;
Jelic, V. ;
Pandey, V. N. ;
Ghosh, A. ;
Abdalla, F. B. ;
Bernardi, G. ;
Brentjens, M. A. ;
de Bruyn, A. G. ;
Bus, S. ;
Ciardi, B. ;
Chapman, E. ;
Daiboo, S. ;
Fernandez, E. R. ;
Harker, G. ;
Iliev, I. T. ;
Jensen, H. ;
Martinez-Rubi, O. ;
Mellema, G. ;
Mevius, M. ;
Offringa, A. R. ;
Patil, A. H. ;
Schaye, J. ;
Thomas, R. M. ;
van der Tol, S. ;
Vedantham, H. K. ;
Yatawatta, S. ;
Zaroubi, S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 451 (04) :3709-3727
[4]   Using baseline-dependent window functions for data compression and field-of-interest shaping in radio interferometry [J].
Atemkeng, M. T. ;
Smirnov, O. M. ;
Tasse, C. ;
Foster, G. ;
Jonas, J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 462 (03) :2542-2558
[5]   The FHD/εppsilon Epoch of Reionisation power spectrum pipeline [J].
Barry, N. ;
Beardsley, A. P. ;
Byrne, R. ;
Hazelton, B. ;
Morales, M. F. ;
Pober, J. C. ;
Sullivan, I. .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2019, 36
[6]   Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA [J].
Barry, N. ;
Hazelton, B. ;
Sullivan, I. ;
Morales, M. F. ;
Pober, J. C. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (03) :3135-3144
[7]   FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7 [J].
Beardsley, A. P. ;
Hazelton, B. J. ;
Sullivan, I. S. ;
Carroll, P. ;
Barry, N. ;
Rahimi, M. ;
Pindor, B. ;
Trott, C. M. ;
Line, J. ;
Jacobs, Daniel C. ;
Morales, M. F. ;
Pober, J. C. ;
Bernardi, G. ;
Bowman, Judd D. ;
Busch, M. P. ;
Briggs, F. ;
Cappallo, R. J. ;
Corey, B. E. ;
de Oliveira-Costa, A. ;
Dillon, Joshua S. ;
Emrich, D. ;
Ewall-Wice, A. ;
Feng, L. ;
Gaensler, B. M. ;
Goeke, R. ;
Greenhill, L. J. ;
Hewitt, J. N. ;
Hurley-Walker, N. ;
Johnston-Hollitt, M. ;
Kaplan, D. L. ;
Kasper, J. C. ;
Kim, H. S. ;
Kratzenberg, E. ;
Lenc, E. ;
Loeb, A. ;
Lonsdale, C. J. ;
Lynch, M. J. ;
McKinley, B. ;
McWhirter, S. R. ;
Mitchell, D. A. ;
Morgan, E. ;
Neben, A. R. ;
Thyagarajan, Nithyanandan ;
Oberoi, D. ;
Offringa, A. R. ;
Ord, S. M. ;
Paul, S. ;
Prabu, T. ;
Procopio, P. ;
Riding, J. .
ASTROPHYSICAL JOURNAL, 2016, 833 (01)
[8]   Correcting direction-dependent gains in the deconvolution of radio interferometric images [J].
Bhatnagar, S. ;
Cornwell, T. J. ;
Golap, K. ;
Uson, J. M. .
ASTRONOMY & ASTROPHYSICS, 2008, 487 (01) :419-429
[9]   WIDE-FIELD WIDE-BAND INTERFEROMETRIC IMAGING: THE WB A-PROJECTION AND HYBRID ALGORITHMS [J].
Bhatnagar, S. ;
Rau, U. ;
Golap, K. .
ASTROPHYSICAL JOURNAL, 2013, 770 (02)
[10]   Extragalactic Peaked-spectrum Radio Sources at Low Frequencies [J].
Callingham, J. R. ;
Ekers, R. D. ;
Gaensler, B. M. ;
Line, J. L. B. ;
Hurley-Walker, N. ;
Sadler, E. M. ;
Tingay, S. J. ;
Hancock, P. J. ;
Bell, M. E. ;
Dwarakanath, K. S. ;
For, B. -Q. ;
Franzen, T. M. O. ;
Hindson, L. ;
Johnston-Hollitt, M. ;
Kapinska, A. D. ;
Lenc, E. ;
McKinley, B. ;
Morgan, J. ;
Offringa, A. R. ;
Procopio, P. ;
Staveley-Smith, L. ;
Wayth, R. B. ;
Wu, C. ;
Zheng, Q. .
ASTROPHYSICAL JOURNAL, 2017, 836 (02)