On the small sample behavior of Dirichlet process mixture models for data supported on compact intervals

被引:1
|
作者
Wehrhahn, Claudia [1 ]
Jara, Alejandro [2 ,3 ]
Barrientos, Andres F. [4 ]
机构
[1] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[2] Pontificia Univ Catolica Chile, Dept Stat, Casilla 306,Correo 22, Santiago, Chile
[3] Millennium Nucl Ctr Discovery Struct Complex Data, Casilla 306,Correo 22, Santiago, Chile
[4] Duke Univ, Dept Stat Sci, Durham, NC USA
基金
美国国家科学基金会;
关键词
Density estimation; Random Bernstein polynomials; Mixture of beta distributions; Bayesian nonparametrics; Posterior convergence rate;
D O I
10.1080/03610918.2019.1568470
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian nonparametric models provide a general framework for flexible statistical modeling of modern complex data sets. We compare a rate-optimal and rate-suboptimal Bayesian nonparametric model for density estimation for data supported on a compact interval, by means of the analyses of simulated and real data. The results show that rate-optimal models are not uniformly better, across sample sizes, with respect to the way in which the posterior mass concentrates around a true model and that suboptimal models can outperform the optimal ones, even for relatively large sample sizes.
引用
收藏
页码:786 / 810
页数:25
相关论文
共 24 条
  • [1] Dirichlet process mixture models with shrinkage prior
    Ding, Dawei
    Karabatsos, George
    STAT, 2021, 10 (01):
  • [2] Background Subtraction with Dirichlet Process Mixture Models
    Haines, Tom S. F.
    Xiang, Tao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 670 - 683
  • [3] Hybrid Dirichlet mixture models for functional data
    Petrone, Sonia
    Guindani, Michele
    Gelfand, Alan E.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 755 - 782
  • [4] A DIRICHLET PROCESS MIXTURE OF HIDDEN MARKOV MODELS FOR PROTEIN STRUCTURE PREDICTION
    Lennox, Kristin P.
    Dahl, David B.
    Vannucci, Marina
    Day, Ryan
    Tsai, Jerry W.
    ANNALS OF APPLIED STATISTICS, 2010, 4 (02) : 916 - 942
  • [5] Fast Bayesian Inference in Dirichlet Process Mixture Models
    Wang, Lianming
    Dunson, David B.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 196 - 216
  • [6] Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution
    Goeruer, Dilan
    Rasmussen, Carl Edward
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2010, 25 (04) : 653 - 664
  • [7] Selecting the precision parameter prior in Dirichlet process mixture models
    Murugiah, Siva
    Sweeting, Trevor
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 1947 - 1959
  • [8] On selecting a prior for the precision parameter of Dirichlet process mixture models
    Dorazio, Robert M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3384 - 3390
  • [9] A Sequential Algorithm for Fast Fitting of Dirichlet Process Mixture Models
    Zhang, Xiaole
    Nott, David J.
    Yau, Christopher
    Jasra, Ajay
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (04) : 1143 - 1162
  • [10] Dirichlet Process Gaussian Mixture Models:Choice of the Base Distribution
    Dilan Grür
    Carl Edward Rasmussen
    JournalofComputerScience&Technology, 2010, 25 (04) : 653 - 664