共 24 条
On the small sample behavior of Dirichlet process mixture models for data supported on compact intervals
被引:1
|作者:
Wehrhahn, Claudia
[1
]
Jara, Alejandro
[2
,3
]
Barrientos, Andres F.
[4
]
机构:
[1] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[2] Pontificia Univ Catolica Chile, Dept Stat, Casilla 306,Correo 22, Santiago, Chile
[3] Millennium Nucl Ctr Discovery Struct Complex Data, Casilla 306,Correo 22, Santiago, Chile
[4] Duke Univ, Dept Stat Sci, Durham, NC USA
基金:
美国国家科学基金会;
关键词:
Density estimation;
Random Bernstein polynomials;
Mixture of beta distributions;
Bayesian nonparametrics;
Posterior convergence rate;
D O I:
10.1080/03610918.2019.1568470
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Bayesian nonparametric models provide a general framework for flexible statistical modeling of modern complex data sets. We compare a rate-optimal and rate-suboptimal Bayesian nonparametric model for density estimation for data supported on a compact interval, by means of the analyses of simulated and real data. The results show that rate-optimal models are not uniformly better, across sample sizes, with respect to the way in which the posterior mass concentrates around a true model and that suboptimal models can outperform the optimal ones, even for relatively large sample sizes.
引用
收藏
页码:786 / 810
页数:25
相关论文