Chern numbers for singular varieties and elliptic homology

被引:49
作者
Totaro, B [1 ]
机构
[1] Univ Cambridge, Cambridge CB2 1SB, England
关键词
D O I
10.2307/121047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:757 / 791
页数:35
相关论文
共 33 条
[1]   ON ANALYTIC SURFACES WITH DOUBLE POINTS [J].
ATIYAH, MF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 247 (1249) :237-244
[2]   BORDISM THEORY OF MANIFOLDS WITH SINGULARITIES [J].
BAAS, NA .
MATHEMATICA SCANDINAVICA, 1973, 33 (02) :279-302
[3]   ALGEBRAIC CYCLES AND ASSOCIATED HOMOMORPHISMS IN INTERSECTION HOMOLOGY [J].
BARTHEL, G ;
BRASSELET, JP ;
FIESELER, KH ;
GABBER, O ;
KAUP, L .
ANNALS OF MATHEMATICS, 1995, 141 (01) :147-179
[4]   RIEMANN-ROCH AND TOPOLOGICAL K-THEORY FOR SINGULAR-VARIETIES [J].
BAUM, P ;
FULTON, W ;
MACPHERSON, R .
ACTA MATHEMATICA, 1979, 143 (3-4) :155-192
[5]  
BRASSELET JP, 1984, TRAVAUX COURS, V23, P5
[6]  
Deligne P., 1975, Courbes elliptiques: formulaire d'apres J. Tate, V476, P53
[7]  
DUBOIS P, 1981, B SOC MATH FR, V109, P41
[8]  
Eichler M., 1985, THEORY JACOBI FORMS
[9]  
Fulton W., 1984, INTERSECTION THEORY
[10]   INTERSECTION HOMOLOGY .2. [J].
GORESKY, M ;
MACPHERSON, R .
INVENTIONES MATHEMATICAE, 1983, 72 (01) :77-129