Periodic domains of quasiregular maps

被引:5
|
作者
Nicks, Daniel A. [1 ]
Sixsmith, David J. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
FAST ESCAPING SET; BAKER DOMAINS; MEROMORPHIC FUNCTIONS; FIXED-POINTS; ITERATION; MAPPINGS; DYNAMICS; GROWTH; WEB;
D O I
10.1017/etds.2016.116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the iteration of quasiregular maps of transcendental type from R-d to R-d. We give a bound on the rate at which the iterates of such a map can escape to infinity in a periodic component of the quasi-Fatou set. We give examples which show that this result is the best possible. Under an additional hypothesis, which is satisfied by all uniformly quasiregular maps, this bound can be improved to be the same as those in a Baker domain of a transcendental entire function. We construct a quasiregular map of transcendental type from R-3 to R-3 with a periodic domain in which all iterates tend locally uniformly to infinity. This is the first example of such behaviour in a dimension greater than two. Our construction uses a general result regarding the extension of bi-Lipschitz maps. In addition, we show that there is a quasiregular map of transcendental type from R-3 to R-3 which is equal to the identity map in a half-space.
引用
收藏
页码:2321 / 2344
页数:24
相关论文
共 50 条
  • [31] RATIONAL PERIODIC POINTS FOR QUADRATIC MAPS
    Canci, Jung Kyu
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (03) : 953 - 985
  • [32] Winding and magnetic helicity in periodic domains
    Xiao, Daining
    Prior, Christopher B.
    Yeates, Anthony R.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2025, 481 (2307):
  • [33] Dipole Interactions in Doubly Periodic Domains
    Tsang, Alan Cheng Hou
    Kanso, Eva
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (06) : 971 - 991
  • [34] On reversible maps and symmetric periodic points
    Kang, Jungsoo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 1479 - 1498
  • [35] ON ITERATES OF HOLOMORPHIC MAPS IN STRONGLY PSEUDOCONVEX DOMAINS
    ZHANG, WJ
    REN, FY
    QIAO, JY
    CHINESE SCIENCE BULLETIN, 1993, 38 (11): : 881 - 883
  • [36] Absorbing sets and Baker domains for holomorphic maps
    Baranski, Krzysztof
    Fagella, Nuria
    Jarque, Xavier
    Karpinska, Boguslawa
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 92 : 144 - 162
  • [37] On Iterates of Holomorphic Maps in Strongly Pseudoconvex Domains
    张文俊
    任福尧
    乔建永
    ChineseScienceBulletin, 1993, (11) : 881 - 883
  • [38] Heisenberg quasiregular ellipticity
    Fassler, Katrin
    Lukyanenko, Anton
    Tyson, Jeremy T.
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (02) : 471 - 520
  • [39] QUASIREGULAR DISTORTION OF DIMENSIONS
    Chrontsios-garitsis, Efstathios-k.
    CONFORMAL GEOMETRY AND DYNAMICS, 2024, 28 : 165 - 175
  • [40] Signed quasiregular curves
    Heikkila, Susanna
    JOURNAL D ANALYSE MATHEMATIQUE, 2023, 150 (01): : 37 - 55