Periodic domains of quasiregular maps

被引:5
|
作者
Nicks, Daniel A. [1 ]
Sixsmith, David J. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
FAST ESCAPING SET; BAKER DOMAINS; MEROMORPHIC FUNCTIONS; FIXED-POINTS; ITERATION; MAPPINGS; DYNAMICS; GROWTH; WEB;
D O I
10.1017/etds.2016.116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the iteration of quasiregular maps of transcendental type from R-d to R-d. We give a bound on the rate at which the iterates of such a map can escape to infinity in a periodic component of the quasi-Fatou set. We give examples which show that this result is the best possible. Under an additional hypothesis, which is satisfied by all uniformly quasiregular maps, this bound can be improved to be the same as those in a Baker domain of a transcendental entire function. We construct a quasiregular map of transcendental type from R-3 to R-3 with a periodic domain in which all iterates tend locally uniformly to infinity. This is the first example of such behaviour in a dimension greater than two. Our construction uses a general result regarding the extension of bi-Lipschitz maps. In addition, we show that there is a quasiregular map of transcendental type from R-3 to R-3 which is equal to the identity map in a half-space.
引用
收藏
页码:2321 / 2344
页数:24
相关论文
共 50 条
  • [21] THE ESCAPING SET OF A QUASIREGULAR MAPPING
    Bergweiler, Walter
    Fletcher, Alastair
    Langley, Jim
    Meyer, Janis
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (02) : 641 - 651
  • [22] Polyhedra as domains of harmonic maps
    Fuglede, Bent
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (05) : 815 - 830
  • [23] The bungee set in quasiregular dynamics
    Nicks, Daniel A.
    Sixsmith, David J.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (01) : 120 - 128
  • [24] Hausdorff dimension in quasiregular dynamics
    Bergweiler, Walter
    Tsantaris, Athanasios
    ISRAEL JOURNAL OF MATHEMATICS, 2025, 265 (01) : 429 - 465
  • [25] The periodic points of ε-contractive maps in fuzzy metric spaces
    Sun, Taixiang
    Han, Caihong
    Su, Guangwang
    Qin, Bin
    Li, Lue
    APPLIED GENERAL TOPOLOGY, 2021, 22 (02): : 311 - 319
  • [26] Periodic structure of σ-permutations maps on in
    Balibrea F.
    Linero A.
    Aequationes mathematicae, 2001, 62 (3) : 265 - 279
  • [27] On Quasiregular Linearizers
    Fletcher, Alastair
    Macclure, Douglas
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2015, 15 (02) : 263 - 276
  • [28] The fast escaping set for quasiregular mappings
    Bergweiler, Walter
    Drasin, David
    Fletcher, Alastair
    ANALYSIS AND MATHEMATICAL PHYSICS, 2014, 4 (1-2) : 83 - 98
  • [29] Slow escaping points of quasiregular mappings
    Nicks, Daniel A.
    MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (3-4) : 1053 - 1071
  • [30] Chaotic dynamics of a quasiregular sine mapping
    Fletcher, Alastair N.
    Nicks, Daniel A.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (08) : 1353 - 1360