Periodic domains of quasiregular maps

被引:5
|
作者
Nicks, Daniel A. [1 ]
Sixsmith, David J. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
FAST ESCAPING SET; BAKER DOMAINS; MEROMORPHIC FUNCTIONS; FIXED-POINTS; ITERATION; MAPPINGS; DYNAMICS; GROWTH; WEB;
D O I
10.1017/etds.2016.116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the iteration of quasiregular maps of transcendental type from R-d to R-d. We give a bound on the rate at which the iterates of such a map can escape to infinity in a periodic component of the quasi-Fatou set. We give examples which show that this result is the best possible. Under an additional hypothesis, which is satisfied by all uniformly quasiregular maps, this bound can be improved to be the same as those in a Baker domain of a transcendental entire function. We construct a quasiregular map of transcendental type from R-3 to R-3 with a periodic domain in which all iterates tend locally uniformly to infinity. This is the first example of such behaviour in a dimension greater than two. Our construction uses a general result regarding the extension of bi-Lipschitz maps. In addition, we show that there is a quasiregular map of transcendental type from R-3 to R-3 which is equal to the identity map in a half-space.
引用
收藏
页码:2321 / 2344
页数:24
相关论文
共 50 条
  • [1] Permutable quasiregular maps
    Tsantaris, Athanasios
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 173 (01) : 105 - 121
  • [2] FOUNDATIONS FOR AN ITERATION THEORY OF ENTIRE QUASIREGULAR MAPS
    Bergweiler, Walter
    Nicks, Daniel A.
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (01) : 147 - 184
  • [3] On Bottcher coordinates and quasiregular maps
    Fletcher, Alastair
    Fryer, Rob
    QUASICONFORMAL MAPPINGS, RIEMANN SURFACES, AND TEICHMULLER SPACES, 2012, 575 : 53 - +
  • [4] WANDERING DOMAINS IN QUASIREGULAR DYNAMICS
    Nicks, Daniel A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (04) : 1385 - 1392
  • [5] Hollow quasi-Fatou components of quasiregular maps
    Nicks, Daniel A.
    Sixsmith, David J.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 162 (03) : 561 - 574
  • [6] Bubbling of quasiregular maps
    Pankka, Pekka
    Souto, Juan
    MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 1577 - 1610
  • [7] The Dynamics Of Quasiregular Maps of Punctured Space
    Nicks, Daniel A.
    Sixsmith, David J.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (01) : 323 - 352
  • [8] THE SIZE AND TOPOLOGY OF QUASI-FATOU COMPONENTS OF QUASIREGULAR MAPS
    Nicks, Daniel A.
    Sixsmith, David J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (02) : 749 - 763
  • [9] Uniformly Quasiregular Maps on the Compactified Heisenberg Group
    Balogh, Zoltan M.
    Faessler, Katrin
    Peltonen, Kirsi
    JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (03) : 633 - 665
  • [10] Quasiregular maps and the conductivity equation in the Heisenberg group
    Isopoussu, Anton
    Peltonen, Kirsi
    Tyson, Jeremy T.
    IN THE TRADITION OF AHLFORS-BERS, VI, 2013, 590 : 61 - 75