Exact results for model wave functions of anisotropic composite fermions in the fractional quantum Hall effect

被引:31
作者
Balram, Ajit C. [1 ]
Jain, J. K. [1 ]
机构
[1] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
SPIN POLARIZATION; 2-DIMENSIONAL ELECTRONS; INCOMPRESSIBLE STATES; EFFECTIVE-MASS; LIQUID; PHASE; EXCITATIONS; SURFACE; FLUID;
D O I
10.1103/PhysRevB.93.075121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microscopic wave functions of the composite fermion theory can incorporate electron mass anisotropy by a trivial rescaling of the coordinates. These wave functions are very likely adiabatically connected to the actual wave functions of the anisotropic fractional quantum Hall states. We show in this paper that they possess the nice property that their energies can be analytically related to the previously calculated energies for the isotropic states through a universal scale factor, thus allowing an estimation of several observables in the thermodynamic limit for all fractional quantum Hall states as well as the composite fermion Fermi sea. The rather weak dependence of the scale factor on the anisotropy provides insight into why fractional quantum Hall effect and composite fermions are quite robust to electron mass anisotropy. We discuss how better, though still approximate, wave functions can be obtained by introducing a variational parameter, following Haldane [F. D. M. Haldane, Phys. Rev. Lett. 107, 116801 (2011)], but the resulting wave functions are not readily amenable to calculations. Our considerations are also applicable, with minimal modification, to the case where the dielectric function of the background material is anisotropic.
引用
收藏
页数:9
相关论文
共 92 条
[1]   Incompressible states of dirac fermions in graphene with anisotropic interactions [J].
Apalkov, Vadim M. ;
Chakraborty, Tapash .
SOLID STATE COMMUNICATIONS, 2014, 177 :128-131
[2]   Fermi surface of composite fermions and one-particle excitations at ν=1/2:: Effect of band-mass anisotropy [J].
Balagurov, DB ;
Lozovik, YE .
PHYSICAL REVIEW B, 2000, 62 (03) :1481-1484
[3]   Luttinger Theorem for the Strongly Correlated Fermi Liquid of Composite Fermions [J].
Balram, Ajit C. ;
Toke, Csaba ;
Jain, J. K. .
PHYSICAL REVIEW LETTERS, 2015, 115 (18)
[4]   Fractional quantum Hall effect in graphene: Quantitative comparison between theory and experiment [J].
Balram, Ajit C. ;
Toke, Csaba ;
Wojs, A. ;
Jain, J. K. .
PHYSICAL REVIEW B, 2015, 92 (07)
[5]   Phase diagram of fractional quantum Hall effect of composite fermions in multicomponent systems [J].
Balram, Ajit C. ;
Toke, Csaba ;
Wojs, A. ;
Jain, J. K. .
PHYSICAL REVIEW B, 2015, 91 (04)
[6]   Valley polarization and susceptibility of composite fermions around a filling factor v = 3/2 [J].
Bishop, N. C. ;
Padmanabhan, M. ;
Vakili, K. ;
Shkolnikov, Y. P. ;
De Poortere, E. P. ;
Shayegan, M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (26)
[7]   Spinful composite fermions in a negative effective field [J].
Davenport, Simon C. ;
Simon, Steven H. .
PHYSICAL REVIEW B, 2012, 85 (24)
[8]   BAND-STRUCTURE OF THE FRACTIONAL QUANTUM HALL-EFFECT [J].
DEV, G ;
JAIN, JK .
PHYSICAL REVIEW LETTERS, 1992, 69 (19) :2843-2846
[9]   JASTROW-SLATER TRIAL WAVE-FUNCTIONS FOR THE FRACTIONAL QUANTUM HALL-EFFECT - RESULTS FOR FEW-PARTICLE SYSTEMS [J].
DEV, G ;
JAIN, JK .
PHYSICAL REVIEW B, 1992, 45 (03) :1223-1230
[10]   EXPERIMENTAL-EVIDENCE FOR NEW PARTICLES IN THE FRACTIONAL QUANTUM HALL-EFFECT [J].
DU, RR ;
STORMER, HL ;
TSUI, DC ;
PFEIFFER, LN ;
WEST, KW .
PHYSICAL REVIEW LETTERS, 1993, 70 (19) :2944-2947