The initial value problem for reductions of the Benney equations

被引:23
作者
Yu, L [1 ]
Gibbons, J [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
关键词
D O I
10.1088/0266-5611/16/3/305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of N-parameter reductions of Benney's equations, introduced in Gibbons and Kodama (Gibbons J and Kodama Y 1994 Solving dispersionless Lax equations Proc. Singular Limits of Dispersive Waves (Nato ASI Adv. Sci. Inst. Ser. B: Phys. vol 320) (New York: Plenum) p 61) as a generalization of the dispersionless Lax equations. Using Geogdzhaev's method (Geogjaev V V [Geogdzhaev V V]1994 The quasiclassical limit of the inverse scattering problem method Proc. Singular Limits of Dispersive Wave (Nato ASI Adv. Sci. Inst. Ser. B: Phys. vol 20) (New York: Plenum) p 53). we solve the initial value problem for the reduced system. This construction is carried out explicitly for the reduction associated with an elliptic curve.
引用
收藏
页码:605 / 618
页数:14
相关论文
共 18 条
  • [1] [Anonymous], 1996, COURSE MODERN ANAL, DOI DOI 10.1017/CBO9780511608759
  • [2] BENNEY DJ, 1973, STUD APPL MATH, V52, P45
  • [3] Dubrovin B. A., 1989, RUSS MATH SURV, V44, P35, DOI 10.1070/RM1989v044n06ABEH002300
  • [4] EILBECK JC, 1998, P C SIDE 3
  • [5] Separable Hamiltonians and integrable systems of hydrodynamic type
    Ferapontov, EV
    Fordy, AP
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1997, 21 (02) : 169 - 182
  • [6] MULTIPHASE AVERAGING AND THE INVERSE SPECTRAL SOLUTION OF THE KORTEWEG-DEVRIES EQUATION
    FLASCHKA, H
    FOREST, MG
    MCLAUGHLIN, DW
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) : 739 - 784
  • [7] GEOGDZHAEV V, 1987, TEOR MAT FIZ, V73, P255
  • [8] GEOGJAEV VV, 1994, NATO ADV SCI INST SE, V320, P53
  • [9] GIBBONS J, 1994, NATO ADV SCI INST SE, V320, P61
  • [10] Reductions of the Benney equations
    Gibbons, J
    Tsarev, SP
    [J]. PHYSICS LETTERS A, 1996, 211 (01) : 19 - 24