Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras

被引:2
作者
Cagliero, Leandro [1 ]
Levstein, Fernando [1 ]
Szechtman, Fernando [2 ]
机构
[1] Univ Nacl Cordoba, FaMAF CIEM CONICET, Medina Allende S-N,Ciudad Univ, RA-5000 Cordoba, Argentina
[2] Univ Regina, Dept Math & Stat, Regina, SK, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Uniserial; Indecomposable; Free l-step nilpotent Lie algebra; Nilpotency class; FINITE-DIMENSIONAL REPRESENTATIONS; INDECOMPOSABLE REPRESENTATIONS; CLASSIFICATION; GEOMETRY;
D O I
10.1016/j.jalgebra.2021.06.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a sequence (d) over right arrow = (d(1), ..., d(k)) of natural numbers, we consider the Lie subalgebra h of gl(d, F), where d = d(1)+ ... + d(k) and F is a field of characteristic 0, generated by two block upper triangular matrices D and E partitioned according to (d) over right arrow, and study the problem of computing the nilpotency degree m of the nilradical no f h. We obtain a complete answer when D and E belong to a certain family of matrices that arises naturally when attempting to classify the indecomposable modules of certain solvable Lie algebras. Our determination of m depends in an essential manner on the symmetry of E with respect to an outer automorphism of sl(d). The proof that mdepends solely on this symmetry is long and delicate. As a direct application of our investigations on hand n we give a full classification of all uniserial modules of an extension of the free l-step nilpotent Lie algebra on n generators when F is algebraically closed. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:447 / 483
页数:37
相关论文
共 19 条
[1]  
Auslander M., 1995, REPRESENTATION THEOR
[2]   APPROXIMATING MODULES BY MODULES OF FINITE PROJECTIVE DIMENSION [J].
BURGESS, WD ;
HUISGEN, BZ .
JOURNAL OF ALGEBRA, 1995, 178 (01) :48-91
[3]   Free 2-step nilpotent Lie algebras and indecomposable representations [J].
Cagliero, Leandro ;
Gutierrez Frez, Luis ;
Szechtman, Fernando .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) :2990-3005
[4]   Classification of finite dimensional uniserial representations of conformal Galilei algebras [J].
Cagliero, Leandro ;
Gutierrez Frez, Luis ;
Szechtman, Fernando .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (10)
[5]   Indecomposable Modules of 2-step Solvable Lie Algebras in Arbitrary Characteristic [J].
Cagliero, Leandro ;
Szechtman, Fernando .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) :1-10
[6]   The classification of uniserial sl(2) (sic) V(m)-modules and a new interpretation of the Racah-Wigner 6j-symbol [J].
Cagliero, Leandro ;
Szechtman, Fernando .
JOURNAL OF ALGEBRA, 2013, 386 :142-175
[7]   Indecomposable modules of a family of solvable Lie algebras [J].
Casati, Paolo ;
Previtali, Andrea ;
Szechtman, Fernando .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 :423-446
[8]   The classification of the perfect cyclic sf(n+1) α Cn+l-modules [J].
Casati, Paolo .
JOURNAL OF ALGEBRA, 2017, 476 :311-343
[9]   Indecomposable representations of the Diamond Lie algebra [J].
Casati, Paolo ;
Minniti, Stefania ;
Salari, Valentina .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
[10]  
Conley CH, 2009, CONTEMP MATH, V490, P61