Abelian and non-Abelian quantum geometric tensor

被引:87
作者
Ma, Yu-Quan [1 ]
Chen, Shu [1 ]
Fan, Heng [1 ]
Liu, Wu-Ming [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
关键词
QUANTIZED HALL CONDUCTANCE;
D O I
10.1103/PhysRevB.81.245129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a generalized quantum geometric tenor to understand topological quantum phase transitions, which can be defined on the parameter space with the adiabatic evolution of a quantum many-body system. The generalized quantum geometric tenor contains two different local measurements, the non-Abelian Riemannian metric and the non-Abelian Berry curvature, which are recognized as two natural geometric characterizations for the change in the ground-state properties when the parameter of the Hamiltonian varies. Our results show the symmetry-breaking and topological quantum phase transitions can be understood as the singular behavior of the local and topological properties of the quantum geometric tenor in the thermodynamic limit.
引用
收藏
页数:5
相关论文
共 29 条
  • [1] Fidelity analysis of topological quantum phase transitions
    Abasto, Damian F.
    Hamma, Alioscia
    Zanardi, Paolo
    [J]. PHYSICAL REVIEW A, 2008, 78 (01):
  • [2] [Anonymous], 2000, QUANTUM PHASE TRANSI
  • [3] Berry M. V., 1989, GEOMETRIC PHASES PHY
  • [4] Geometric phases and criticality in spin-chain systems
    Carollo, ACM
    Pachos, JK
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (15)
  • [5] Fidelity and quantum phase transition for the Heisenberg chain with next-nearest-neighbor interaction
    Chen, Shu
    Wang, Li
    Gu, Shi-Jian
    Wang, Yupeng
    [J]. PHYSICAL REVIEW E, 2007, 76 (06):
  • [6] Fidelity in topological quantum phases of matter
    Garnerone, Silvano
    Abasto, Damian
    Haas, Stephan
    Zanardi, Paolo
    [J]. PHYSICAL REVIEW A, 2009, 79 (03):
  • [8] QUANTIZED SPIN CURRENTS IN 2-DIMENSIONAL CHIRAL MAGNETS
    HALDANE, FDM
    AROVAS, DP
    [J]. PHYSICAL REVIEW B, 1995, 52 (06): : 4223 - 4225
  • [9] HAMMA A, ARXIVQUANTPH0602091
  • [10] Characterization of topological insulators: Chern numbers for ground state multiplet
    Hatsugai, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (05) : 1374 - 1377