Abelian and non-Abelian quantum geometric tensor

被引:88
|
作者
Ma, Yu-Quan [1 ]
Chen, Shu [1 ]
Fan, Heng [1 ]
Liu, Wu-Ming [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
关键词
QUANTIZED HALL CONDUCTANCE;
D O I
10.1103/PhysRevB.81.245129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a generalized quantum geometric tenor to understand topological quantum phase transitions, which can be defined on the parameter space with the adiabatic evolution of a quantum many-body system. The generalized quantum geometric tenor contains two different local measurements, the non-Abelian Riemannian metric and the non-Abelian Berry curvature, which are recognized as two natural geometric characterizations for the change in the ground-state properties when the parameter of the Hamiltonian varies. Our results show the symmetry-breaking and topological quantum phase transitions can be understood as the singular behavior of the local and topological properties of the quantum geometric tenor in the thermodynamic limit.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Phase space formulation of the Abelian and non-Abelian quantum geometric tensor
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    David Vergara, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [2] Non-Abelian quantum geometric tensor in degenerate topological semimetals
    Ding, Hai -Tao
    Zhang, Chang-Xiao
    Liu, Jing-Xin
    Wang, Jian-Te
    Zhang, Dan -Wei
    Zhu, Shi-Liang
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [3] Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits
    Zheng, Wen
    Xu, Jianwen
    Ma, Zhuang
    Li, Yong
    Dong, Yuqian
    Zhang, Yu
    Wang, Xiaohan
    Sun, Guozhu
    Wu, Peiheng
    Zhao, Jie
    Li, Shaoxiong
    Lan, Dong
    Tan, Xinsheng
    Yu, Yang
    CHINESE PHYSICS LETTERS, 2022, 39 (10)
  • [4] Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits
    郑文
    徐建文
    马壮
    李勇
    董煜倩
    张煜
    王晓晗
    孙国柱
    吴培亨
    赵杰
    李邵雄
    兰栋
    谭新生
    于扬
    Chinese Physics Letters, 2022, 39 (10) : 12 - 28
  • [5] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [6] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101
  • [7] The non-Abelian tensor multiplet
    Gustavsson, Andreas
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [8] The non-Abelian tensor multiplet
    Andreas Gustavsson
    Journal of High Energy Physics, 2018
  • [9] Non-Abelian geometric phases carried by the spin fluctuation tensor
    Bharath, H. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [10] Non-Abelian geometric quantum memory with an atomic ensemble
    Li, Y
    Zhang, P
    Zanardi, P
    Sun, CP
    PHYSICAL REVIEW A, 2004, 70 (03): : 032330 - 1