Statistical and Machine Learning Methods for Electricity Demand Prediction

被引:0
|
作者
Kotillova, Alexandra [1 ]
Koprinska, Irena [2 ]
Rana, Mashud [2 ]
机构
[1] Univ Zilina, Dept Macro & Microecon, Zilina, Slovakia
[2] Univ Sydney, Sch Informat Technol, Sydney, NSW, Australia
关键词
half-hourly electricity demand prediction; autocorrelation analysis; linear regression; backpropagation neural networks; support vector regression; exponential smoothing; ARIMA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We evaluate statistical and machine learning methods for half-hourly 1-step-ahead electricity demand prediction using Australian electricity data. We show that the machine learning methods, that use autocorrelation feature selection and Backpropagation Neural Networks, Linear Regression and Support Vector Regression as prediction algorithms, outperform the statistical methods Exponential Smoothing and ARIMA and also a number of baselines. We analyse the effect of the day time on the prediction error and show that there are time intervals associated with higher and lower errors and that the prediction methods also differ in their accuracy during the different time intervals. This analysis provides the foundation for a hybrid prediction model that achieved a prediction error MAPE of 0.51%.
引用
收藏
页码:535 / 542
页数:8
相关论文
共 50 条
  • [21] Machine learning application for estimating electricity demand by municipality
    Kusumoto, Yoshiki
    Delage, Remi
    Nakata, Toshihiko
    ENERGY, 2024, 296
  • [22] Forecasting electricity demand by hybrid machine learning model
    Fan, Shu
    Mao, Chengxiong
    Zhang, Jiadong
    Chen, Luonan
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 952 - 963
  • [23] Machine Learning Methods for Demand Estimation
    Bajari, Patrick
    Nekipelov, Denis
    Ryan, Stephen P.
    Yang, Miaoyu
    AMERICAN ECONOMIC REVIEW, 2015, 105 (05): : 481 - 485
  • [24] Machine Learning Empowered Electricity Consumption Prediction
    Al Metrik, Maissa A.
    Musleh, Dhiaa A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 1427 - 1444
  • [25] Effective Electricity Demand Prediction via Deep Learning
    Ko D.
    Yoon Y.
    Kim J.
    Choi H.
    IEIE Transactions on Smart Processing and Computing, 2021, 10 (06): : 483 - 489
  • [26] Statistical Machine-Learning Methods for Genomic Prediction Using the SKM Library
    Montesinos Lopez, Osval A.
    Mosqueda Gonzalez, Brandon Alejandro
    Montesinos Lopez, Abelardo
    Crossa, Jose
    GENES, 2023, 14 (05)
  • [27] Prediction of Energy Consumption of an Administrative Building using Machine Learning and Statistical Methods
    El Alaoui, Meryem
    Chahidi, Laila Ouazzani
    Rougui, Mohammed
    Lemrani, Abdeghafour
    Mechaqrane, Abdellah
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2023, 9 (05): : 1007 - 1022
  • [28] Statistical and machine learning methods for crop yield prediction in the context of precision agriculture
    Burdett, Hannah
    Wellen, Christopher
    PRECISION AGRICULTURE, 2022, 23 (05) : 1553 - 1574
  • [29] Stability of clinical prediction models developed using statistical or machine learning methods
    Riley, Richard D.
    Collins, Gary S.
    BIOMETRICAL JOURNAL, 2023, 65 (08)
  • [30] Prediction of Air Quality and Pollution using Statistical Methods and Machine Learning Techniques
    Devasekhar, V.
    Natarajan, P.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (04) : 927 - 937