Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy

被引:62
作者
Lange, Falko [1 ,2 ]
Hoernschemeyer, Max Frederik [1 ]
Kirschstein, Timo [1 ,2 ]
机构
[1] Rostock Univ, Med Ctr, Oscar Langendorff Inst Physiol, D-18057 Rostock, Germany
[2] Univ Rostock, Ctr Transdisciplinary Neurosci Rostock, D-18147 Rostock, Germany
关键词
glutamate; ionotropic glutamate receptor; metabotropic glutamate receptor; glioblastoma; epilepsy; seizures; perampanel; preclinical model; AMINO-ACID OXIDASE; NEWLY-DIAGNOSED GLIOBLASTOMA; INTEGRATED GENOMIC ANALYSIS; D-SERINE METABOLISM; VALPROIC ACID; RADIATION-THERAPY; NMDA RECEPTOR; GENE-EXPRESSION; ANTIEPILEPTIC DRUGS; CELL-PROLIFERATION;
D O I
10.3390/cells10051226
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The progression of glioblastomas is associated with a variety of neurological impairments, such as tumor-related epileptic seizures. Seizures are not only a common comorbidity of glioblastoma but often an initial clinical symptom of this cancer entity. Both, glioblastoma and tumor-associated epilepsy are closely linked to one another through several pathophysiological mechanisms, with the neurotransmitter glutamate playing a key role. Glutamate interacts with its ionotropic and metabotropic receptors to promote both tumor progression and excitotoxicity. In this review, based on its physiological functions, our current understanding of glutamate receptors and glutamatergic signaling will be discussed in detail. Furthermore, preclinical models to study glutamatergic interactions between glioma cells and the tumor-surrounding microenvironment will be presented. Finally, current studies addressing glutamate receptors in glioma and tumor-related epilepsy will be highlighted and future approaches to interfere with the glutamatergic network are discussed.
引用
收藏
页数:22
相关论文
共 194 条
[1]   Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo [J].
Arcella, A ;
Carpinelli, G ;
Battaglia, G ;
D'Onofrio, M ;
Santoro, F ;
Ngomba, RT ;
Bruno, V ;
Casolini, P ;
Giangaspero, F ;
Nicoletti, F .
NEURO-ONCOLOGY, 2005, 7 (03) :236-245
[2]   Epilepsy in glioma patients: mechanisms, management, and impact of anticonvulsant therapy [J].
Armstrong, Terri S. ;
Grant, Robin ;
Gilbert, Mark R. ;
Lee, Jong Woo ;
Norden, Andrew D. .
NEURO-ONCOLOGY, 2016, 18 (06) :779-789
[3]   Valproic Acid Use During Radiation Therapy for Glioblastoma Associated With Improved Survival [J].
Barker, Christopher A. ;
Bishop, Andrew J. ;
Chang, Maria ;
Beal, Kathryn ;
Chan, Timothy A. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2013, 86 (03) :504-509
[4]   Genetic and transcriptional evolution alters cancer cell line drug response [J].
Ben-David, Uri ;
Siranosian, Benjamin ;
Ha, Gavin ;
Tang, Helen ;
Oren, Yaara ;
Hinohara, Kunihiko ;
Strathdee, Craig A. ;
Dempster, Joshua ;
Lyons, Nicholas J. ;
Burns, Robert ;
Nag, Anwesha ;
Kugener, Guillaume ;
Cimini, Beth ;
Tsvetkov, Peter ;
Maruvka, Yosef E. ;
O'Rourke, Ryan ;
Garrity, Anthony ;
Tubelli, Andrew A. ;
Bandopadhayay, Pratiti ;
Tsherniak, Aviad ;
Vazquez, Francisca ;
Wong, Bang ;
Birger, Chet ;
Ghandi, Mahmoud ;
Thorner, Aaron R. ;
Bittker, Joshua A. ;
Meyerson, Matthew ;
Getz, Gad ;
Beroukhim, Rameen ;
Golub, Todd R. .
NATURE, 2018, 560 (7718) :325-+
[5]   Effects of valproic acid on histone deacetylase inhibition in vitro and in glioblastoma patient samples [J].
Berendsen, Sharon ;
Frijlink, Elselien ;
Kroonen, Jerome ;
Spliet, Wim G. M. ;
van Hecke, Wim ;
Seute, Tatjana ;
Snijders, Tom J. ;
Robe, Pierre A. .
NEURO-ONCOLOGY ADVANCES, 2019, 1 (01) :1-8
[6]   Development of a Rat Model for Glioma-Related Epilepsy [J].
Bouckaert, Charlotte ;
Germonpre, Charlotte ;
Verhoeven, Jeroen ;
Chong, Seon-Ah ;
Jacquin, Lucas ;
Mairet-Coello, Georges ;
Andre, Veronique Marie ;
Leclercq, Karine ;
Vanhove, Christian ;
De Vos, Filip ;
Van den Broecke, Caroline ;
Goethals, Ingeborg ;
Descamps, Benedicte ;
Donche, Sam ;
Carrette, Evelien ;
Wadman, Wytse ;
Boon, Paul ;
Vonck, Kristl ;
Raedt, Robrecht .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (19) :1-19
[7]  
Brennan CW., 2013, Cell, V155, P462, DOI DOI 10.1016/J.CELL.2013.09.034
[8]  
Brocke Katja S, 2010, Cancer Biol Ther, V9, P455, DOI 10.4161/cbt.9.6.10898
[9]   Angiocentric glioma-associated seizures: The possible role of EATT2, pyruvate carboxylase and glutamine synthetase [J].
Buccoliero, Anna Maria ;
Caporalini, Chiara ;
Scagnet, Mirko ;
Mussa, Federico ;
Giordano, Flavio ;
Sardi, Iacopo ;
Migliastro, Irene ;
Moscardi, Selene ;
Conti, Valerio ;
Barba, Carmen ;
Antonelli, Manila ;
Gianno, Francesca ;
Rossi, Sabrina ;
Diomedi-Camassei, Francesca ;
Gessi, Marco ;
Donofrio, Vittoria ;
Bertero, Luca ;
Giangaspero, Felice ;
Santi, Mariarita ;
Aronica, Eleonora ;
Genitori, Lorenzo ;
Guerrini, Renzo .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2021, 86 :152-154
[10]   Glutamate release by primary brain tumors induces epileptic activity [J].
Buckingham, Susan C. ;
Campbell, Susan L. ;
Haas, Brian R. ;
Montana, Vedrana ;
Robel, Stefanie ;
Ogunrinu, Toyin ;
Sontheimer, Harald .
NATURE MEDICINE, 2011, 17 (10) :1269-U299