SPODT: An R Package to Perform Spatial Partitioning

被引:0
作者
Gaudart, Jean [1 ]
Graffeo, Nathalie [1 ]
Coulibaly, Drissa [2 ]
Barbet, Guillaume [1 ]
Rebaudet, Stanilas [1 ]
Dessay, Nadine
Doumbo, Ogobara K. [2 ]
Giorgi, Roch [1 ]
机构
[1] Aix Marseille Univ, F-13005 Marseille, France
[2] USTT Bamako, MRTC, Bamako, Mali
基金
美国国家卫生研究院;
关键词
spatial; partitionning; malaria; oblique decision tree; R package; MALARIA; RISK; CLUSTERS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Spatial cluster detection is a classical question in epidemiology: Are cases located near other cases? In order to classify a study area into zones of different risks and determine their boundaries, we have developed a spatial partitioning method based on oblique de- cision trees, which is called spatial oblique decision tree (SpODT). This non-parametric method is based on the classification and regression tree (CART) approach introduced by Leo Breiman. Applied to epidemiological spatial data, the algorithm recursively searches among the coordinates for a threshold or a boundary between zones, so that the risks estimated in these zones are as different as possible. While the CART algorithm leads to rectangular zones, providing perpendicular splits of longitudes and latitudes, the SpODT algorithm provides oblique splitting of the study area, which is more appropriate and accu- rate for spatial epidemiology. Oblique decision trees can be considered as non-parametric regression models. Beyond the basic function, we have developed a set of functions that enable extended analyses of spatial data, providing: inference, graphical representations, spatio-temporal analysis, adjustments on covariates, spatial weighted partition, and the gathering of similar adjacent final classes. In this paper, we propose a new R package, SPODT, which provides an extensible set of functions for partitioning spatial and spatio- temporal data. The implementation and extensions of the algorithm are described. Func- tion usage examples are proposed, looking for clustering malaria episodes in Bandiagara, Mali, and samples showing three different cluster shapes.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 31 条
[1]   LOCAL INDICATORS OF SPATIAL ASSOCIATION - LISA [J].
ANSELIN, L .
GEOGRAPHICAL ANALYSIS, 1995, 27 (02) :93-115
[2]  
Assunçao RM, 2006, INT J GEOGR INF SCI, V20, P797, DOI 10.1080/13658810600665111
[3]  
Bivand R. S., 2013, APPL SPATIAL DATA AN, VSecond, DOI [DOI 10.1007/978-1-4614-7618-4, 10.1007/978-1-4614-7618-4]
[4]  
Breiman L., 1984, CLASSIFICATION REGRE
[5]   Inducing oblique decision trees with evolutionary algorithms [J].
Cantú-Paz, E ;
Kamath, C .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (01) :54-68
[6]  
Carter R, 2000, B WORLD HEALTH ORGAN, V78, P1401
[7]   Cluster analysis in geographical epidemiology: the use of several statistical methods and comparison of their results [J].
Chirpaz, E ;
Colonna, M ;
Viel, JF .
REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 2004, 52 (02) :139-149
[8]   Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes [J].
Coleman, Marlize ;
Coleman, Michael ;
Mabuza, Aaron M. ;
Kok, Gerdalize ;
Coetzee, Maureen ;
Durrheim, David N. .
MALARIA JOURNAL, 2009, 8
[9]  
COLONNA M, 1993, REV EPIDEMIOL SANTE, V41, P235
[10]   Spatio-temporal analysis of malaria within a transmission season in Bandiagara, Mali [J].
Coulibaly, Drissa ;
Rebaudet, Stanislas ;
Travassos, Mark ;
Tolo, Youssouf ;
Laurens, Matthew ;
Kone, Abdoulaye K. ;
Traore, Karim ;
Guindo, Ando ;
Diarra, Issa ;
Niangaly, Amadou ;
Daou, Modibo ;
Dembele, Ahmadou ;
Sissoko, Mody ;
Kouriba, Bourema ;
Dessay, Nadine ;
Gaudart, Jean ;
Piarroux, Renaud ;
Thera, Mahamadou A. ;
Plowe, Christopher V. ;
Doumbo, Ogobara K. .
MALARIA JOURNAL, 2013, 12