Asynchronous Federated Learning for Sensor Data with Concept Drift

被引:22
|
作者
Chen, Yujing [1 ]
Chai, Zheng [1 ]
Cheng, Yue [1 ]
Rangwala, Huzefa [1 ]
机构
[1] George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2021年
关键词
federated learning; asynchronous learning; concept drift; communication-efficient; CLASSIFICATION;
D O I
10.1109/BigData52589.2021.9671924
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) involves multiple distributed devices jointly training a shared model without any of the participants having to reveal their local data to a centralized server. Most of previous FL approaches assume that data on devices are fixed and stationary during the training process. However, this assumption is unrealistic because these devices usually have varying sampling rates and different system configurations. In addition, the underlying distribution of the device data can change dynamically over time, which is known as concept drift. Concept drift makes the learning process complicated because of the inconsistency between existing and upcoming data. Traditional concept drift handling techniques such as chunk based and ensemble learning-based methods are not suitable in the federated learning frameworks due to the heterogeneity of local devices. We propose a novel approach, FedConD, to detect and deal with the concept drift on local devices and minimize the effect on the performance of models in asynchronous FL. The drift detection strategy is based on an adaptive mechanism which uses the historical performance of the local models. The drift adaptation is realized by adjusting the regularization parameter of objective function on each local device. Additionally, we design a communication strategy on the server side to select local updates in a prudent fashion and speed up model convergence. Experimental evaluations on three evolving data streams and two image datasets show that FedConD detects and handles concept drift, and also reduces the overall communication cost compared to other baseline methods.
引用
收藏
页码:4822 / 4831
页数:10
相关论文
共 50 条
  • [21] Heterogeneous Drift Learning: Classification of Mix-Attribute Data with Concept Drifts
    Zhao, Lang
    Zhang, Yiqun
    Ji, Yuzhu
    Zeng, An
    Gu, Fangqing
    Luo, Xiaopeng
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 867 - 876
  • [22] Learning under Concept Drift: A Review
    Lu, Jie
    Liu, Anjin
    Dong, Fan
    Gu, Feng
    Gama, Joao
    Zhang, Guangquan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (12) : 2346 - 2363
  • [23] An Adaptive Active Learning Method for Multiclass Imbalanced Data Streams with Concept Drift
    Han, Meng
    Li, Chunpeng
    Meng, Fanxing
    He, Feifei
    Zhang, Ruihua
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [24] BAFL: A Blockchain-Based Asynchronous Federated Learning Framework
    Feng, Lei
    Zhao, Yiqi
    Guo, Shaoyong
    Qiu, Xuesong
    Li, Wenjing
    Yu, Peng
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) : 1092 - 1103
  • [25] Streaming Data Classification with Concept Drift
    Althabiti, Mashail
    Abdullah, Manal
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2019, 12 (01): : 177 - 184
  • [26] AEDFL: Efficient Asynchronous Decentralized Federated Learning with Heterogeneous Devices
    Liu, Ji
    Che, Tianshi
    Zhou, Yang
    Jin, Ruoming
    Dai, Huaiyu
    Dou, Dejing
    Valduriez, Patrick
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 833 - 841
  • [27] Adaptive Transmission Scheduling in Wireless Networks for Asynchronous Federated Learning
    Lee, Hyun-Suk
    Lee, Jang-Won
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3673 - 3687
  • [28] Towards Unsupervised Sudden Data Drift Detection in Federated Learning with Fuzzy Clustering
    Stallmann, Morris
    Wilbik, Anna
    Weiss, Gerhard
    2024 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ-IEEE 2024, 2024,
  • [29] Active Learning Method for Imbalanced Concept Drift Data Stream
    Li Y.-H.
    Wang T.-T.
    Wang S.-G.
    Li D.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (03): : 589 - 606
  • [30] Incremental Learning of Concept Drift from Streaming Imbalanced Data
    Ditzler, Gregory
    Polikar, Robi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (10) : 2283 - 2301