Existence and regularity results for weak solutions to (p, q)-elliptic systems in divergence form

被引:5
作者
Bulicek, Miroslav [1 ]
Cupini, Giovanni [2 ]
Stroffolini, Bianca [3 ]
Verde, Anna [3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Math Inst, Sokolovska 83, Prague 18675, Czech Republic
[2] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
[3] Univ Napoli Federico II, Dipartimento Matemat & Applicaz, Via Cintia, I-80126 Naples, Italy
关键词
Elliptic system; existence of solutions; (p; q)-growth conditions; regularity; NONLINEAR ELLIPTIC-SYSTEMS; GROWTH-CONDITIONS; VARIATIONAL INTEGRALS; MINIMIZERS; EQUATIONS; FUNCTIONALS; CALCULUS;
D O I
10.1515/acv-2016-0054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and regularity results for weak solutions of non-linear elliptic systems with non-variational structure satisfying (p, q)-growth conditions. In particular, we are able to prove higher differentiability results under a dimension-free gap between p and q.
引用
收藏
页码:273 / 288
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 2003, LECT NOTES MATH
[2]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[3]  
[Anonymous], 2006, Applications of mathematics, DOI DOI 10.1007/S10778-006-0110-3
[4]  
[Anonymous], 1968, Boll. Unione Mat. Ital.
[5]   C1,α-solutions to non-autonomous anisotropic variational problems [J].
Bildhauer, M ;
Fuchs, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (03) :309-340
[7]  
Carozza M, 2014, ANN SCUOLA NORM-SCI, V13, P1065
[8]   Higher differentiability of minimizers of convex variational integrals [J].
Carozza, Menita ;
Kristensen, Jan ;
di Napoli, Antonia Passarelli .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (03) :395-411
[9]   EXISTENCE OF WEAK SOLUTIONS FOR ELLIPTIC SYSTEMS WITH p, q-GROWTH [J].
Cupini, Giovanni ;
Leonetti, Francesco ;
Mascolo, Elvira .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (02) :645-658
[10]  
Cupini G, 2014, ADV DIFFERENTIAL EQU, V19, P693