Exponentially confining potential well

被引:10
作者
Alhaidari, A. D. [1 ]
机构
[1] Saudi Ctr Theoret Phys, Jeddah, Saudi Arabia
关键词
exponential potential; tridiagonal representation approach; Bessel polynomial;
D O I
10.1134/S0040577921010050
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce an exponentially confining potential well that can be used as a model to describe the structure of a strongly localized system. We obtain an approximate partial solution of the Schrodinger equation with this potential well where we find the lowest energy spectrum and the corresponding wavefunctions. We use the tridiagonal representation approach as the method for obtaining the solution as a finite series of square-integrable functions written in terms of Bessel polynomials.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 29 条
[1]   Representation of the quantum mechanical wavefunction by orthogonal polynomials in the energy and physical parameters [J].
Alhaidari, A. D. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (01)
[2]   Tridiagonal representation approach in quantum mechanics [J].
Alhaidari, A. D. ;
Bahlouli, H. .
PHYSICA SCRIPTA, 2019, 94 (12)
[3]   Orthogonal polynomials derived from the tridiagonal representation approach [J].
Alhaidari, A. D. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
[4]   Reconstructing the Potential Function in a Formulation of Quantum Mechanics Based on Orthogonal Polynomials [J].
Alhaidari, A. D. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (06) :711-728
[5]   Quantum mechanics without potential function [J].
Alhaidari, A. D. ;
Ismail, M. E. H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
[6]  
Alhaidari AD, 2019, REP MATH PHYS, V84, P393, DOI 10.1016/S0034-4877(19)30100-4
[7]   GROUP-THEORY OF THE MORSE OSCILLATOR [J].
ALHASSID, Y ;
IACHELLO, F ;
GURSEY, F .
CHEMICAL PHYSICS LETTERS, 1983, 99 (01) :27-30
[8]  
[Anonymous], 1975, J PSYCHIATR RES
[9]  
BANDER M, 1966, REV MOD PHYS, V38, P330, DOI 10.1103/RevModPhys.38.330
[10]  
Chihara T. S., 1978, INTRO ORTHOGONAL POL