Individual Identification Using the Functional Brain Fingerprint Detected by the Recurrent Neural Network

被引:26
作者
Chen, Shiyang [1 ,2 ]
Hu, Xiaoping [3 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30322 USA
[3] Univ Calif Riverside, Dept Bioengn, Mat Sci & Engn Bldg,203 N Campus Dr, Riverside, CA 92507 USA
关键词
functional brain fingerprint; functional magnetic resonance imaging; gated recurrent unit; individual identification; recurrent neural network; resting-state; ORGANIZATION; DYNAMICS;
D O I
10.1089/brain.2017.0561
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Individual identification based on brain function has gained traction in literature. Investigating individual differences in brain function can provide additional insights into the brain. In this work, we introduce a recurrent neural network-based model for identifying individuals based on only a short segment of resting-state functional magnetic resonance imaging data. In addition, we demonstrate how the global signal and differences in atlases affect individual identifiability. Furthermore, we investigate neural network features that exhibit the uniqueness of each individual. The results indicate that our model is able to identify individuals based on neural features and provides additional information regarding brain dynamics.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 29 条
  • [1] Tracking Whole-Brain Connectivity Dynamics in the Resting State
    Allen, Elena A.
    Damaraju, Eswar
    Plis, Sergey M.
    Erhardt, Erik B.
    Eichele, Tom
    Calhoun, Vince D.
    [J]. CEREBRAL CORTEX, 2014, 24 (03) : 663 - 676
  • [2] Amodei D., 2015, CoRR
  • [3] [Anonymous], 2010, INTERSPEECH 2010 11
  • [4] Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project
    Burgess, Gregory C.
    Kandala, Sridhar
    Nolan, Dan
    Laumann, Timothy O.
    Power, Jonathan D.
    Adeyemo, Babatunde
    Harms, Michael P.
    Petersen, Steven E.
    Barch, Deanna M.
    [J]. BRAIN CONNECTIVITY, 2016, 6 (09) : 669 - 680
  • [5] Spatiotemporal Modeling of Brain Dynamics Using Resting-State Functional Magnetic Resonance Imaging with Gaussian Hidden Markov Model
    Chen, Shiyang
    Langley, Jason
    Chen, Xiangchuan
    Hu, Xiaoping
    [J]. BRAIN CONNECTIVITY, 2016, 6 (04) : 326 - 334
  • [6] Chung J., 2014, ARXIV
  • [7] Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
    Finn, Emily S.
    Shen, Xilin
    Scheinost, Dustin
    Rosenberg, Monica D.
    Huang, Jessica
    Chun, Marvin M.
    Papademetris, Xenophon
    Constable, R. Todd
    [J]. NATURE NEUROSCIENCE, 2015, 18 (11) : 1664 - 1671
  • [8] A multi-modal parcellation of human cerebral cortex
    Glasser, Matthew F.
    Coalson, Timothy S.
    Robinson, Emma C.
    Hacker, Carl D.
    Harwell, John
    Yacoub, Essa
    Ugurbil, Kamil
    Andersson, Jesper
    Beckmann, Christian F.
    Jenkinson, Mark
    Smith, Stephen M.
    Van Essen, David C.
    [J]. NATURE, 2016, 536 (7615) : 171 - +
  • [9] The minimal preprocessing pipelines for the Human Connectome Project
    Glasser, Matthew F.
    Sotiropoulos, Stamatios N.
    Wilson, J. Anthony
    Coalson, Timothy S.
    Fischl, Bruce
    Andersson, Jesper L.
    Xu, Junqian
    Jbabdi, Saad
    Webster, Matthew
    Polimeni, Jonathan R.
    Van Essen, David C.
    Jenkinson, Mark
    [J]. NEUROIMAGE, 2013, 80 : 105 - 124
  • [10] Glorot X, 2010, P 13 INT C ART INT S, P249, DOI DOI 10.1109/LGRS.2016.2565705