Classification of Some Solvable Leibniz Algebras

被引:7
作者
Demir, Ismail [1 ]
Misra, Kailash C. [1 ]
Stitzinger, Ernie [1 ]
机构
[1] N Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA
关键词
Leibniz algebra; Solvability; Nilpotency; Classification;
D O I
10.1007/s10468-015-9580-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Leibniz algebras are certain generalization of Lie algebras. In this paper we give classification of non-Lie solvable (left) Leibniz algebras of dimension <= 8 with one dimensional derived subalgebra. We use the canonical forms for the congruence classes of matrices of bilinear forms to obtain our result. Our approach can easily be extended to classify these algebras of higher dimensions. We also revisit the classification of three dimensional non-Lie solvable (left) Leibniz algebras.
引用
收藏
页码:405 / 417
页数:13
相关论文
共 12 条
[1]   Ito's theorem and metabelian Leibniz algebras [J].
Agore, A. L. ;
Militaru, G. .
LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (11) :2187-2199
[2]  
Albeverio S., 2006, EXTRACTA MATH, V21, P197
[3]  
Ayupov S., 1999, UZBEK MATH J, V1, P9
[4]   SOME THEOREMS ON LEIBNIZ ALGEBRAS [J].
Barnes, Donald W. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (07) :2463-2472
[5]  
Bloch A., 1965, Math. in USSR Doklady, V165, P471
[6]   The classification of 4-dimensional Leibniz algebras [J].
Canete, Elisa M. ;
Khudoyberdiyev, Abror Kh. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (01) :273-288
[7]   Classification of solvable Leibniz algebras with null-filiform nilradical [J].
Casas, J. M. ;
Ladra, M. ;
Omirov, B. A. ;
Karimjanov, I. A. .
LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06) :758-774
[8]   An algorithm for the classification of 3-dimensional complex Leibniz algebras [J].
Casas, J. M. ;
Insua, M. A. ;
Ladra, M. ;
Ladra, S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3747-3756
[9]  
Demir I., 2014, Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, V623, P41
[10]  
Loday J.-L., 1993, Enseign. Math, V39, P269